检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。
下载FirefoxTitle:Assistant Professor
Research Interests:Causal Inference, Missing Data, Semi/nonparametric Statistics, Stochastic Analysis.
Contact Information:givennamefamilyname@ruc.edu.cn
I obtained BSc (Mathematics) from Southeast University in 2011, and obtained PhD (Statistics) from Chinese University of Hong Kong in 2015. I am appointed as Assistant Professor in ISBD, Renmin University of China from 2016. Homepage: http://zhengzhang.simplesite.com/.
Causal Inference:
1. Chan K. C. G.,Yam S. C. P.,and Zhang Z. (2016). Globally Efficient Nonparametric Inference of Average Treatment Effects by Empirical Balancing Calibration Weighting. Journal of the Royal Statistical Society: Series B . 78(3), 673-700. [Link]
2. Ai C., Huang L. and Zhang Z. (2020). A Mann-Whitney Test of Distributional Effects in A Multivalued Treatment. Journal of Statistical Planning and Inference. 209,85-100. [Link]
3. Chen X., Liu Y., Ma S., and Zhang Z. (2020). Efficient Estimation of Treatment Effects using Neural Networks with A Diverging Number of Confounders. (Major Revision). [Link]
4. Ai. C., Linton O., Motegi K. and Zhang Z. (2021). A Unified Framework for Efficient Estimation of General Treatment Models. Quantitative Economics. 12(3),779-816. [Link]
5. Ai. C., Linton O., and Zhang Z. (2021). Estimation and Inference of Counterfactual Distribution and Quantile Functions in Continuous Treatment Models. Journal of Econometrics. Accepted.
6. Ai C., Huang L. and Zhang Z. (2022). A Simple and Efficient Estimation of Average Treatment Effects in Models with Unmeasured Confounders. Statistica Sinica. 32(3). [Link]
7. Huang W., Linton O., and Zhang Z. (2021). A Unified Framework for Specification Tests of Continuous Treatment Effect Models. Journal of Business & Economic Statistics. Accepted. [Link]
Missing Data:
1. Hamori S., Motegi K. and Zhang Z. (2019). Calibration Estimation for Semiparametric Copula Models with Data Missing at Random. Journal of Multivariate Analysis . 173, 85-109. [Link]
2. Hamori S., Motegi K. and Zhang Z. (2020). Copula-based Regression Models with Responses Missing at Random. Journal of Multivariate Analysis. 180, #104654. [Link]
3.Ai C., Linton O. and Zhang Z. (2020). A Simple and Efficient Estimation Method for Models with Nonignorable Missing Data. Statistica Sinica . 30, 1949-1970. [Link]
Semi/Nonparametric Statistics:
1. Ai. C., Sun L., Zhang Z. and Zhu L. (2019). Testing Independence and Conditional Independence via Mutual Information. (Revision at Journal of Econometrics).
Stochastic Analysis:
1. Bensoussan A., Yam S. C. P., and Zhang Z. (2015). Well-posedness of Mean-field Type Forward-backward Stochastic Differential Equations. Stochastic Processes and their Applications . 125(9), 3327-3354. [Link]
2. Wright J. A., Yam S. C. P., and Zhang Z. (2017). Enlargement of Filtration on Poisson Space: A Malliavin Calculus Approach. Stochastics . 90(5), 682-700. [Link]
3. Privault N., Yam S. C. P., and Zhang Z. (2019). Poisson Discretizations of Wiener Functionals and Malliavin Operators with Wasserstein Estimates. Stochastic Processes and their Applications . 129(9), 3376-3405. [Link]