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Notation

D
= equality in distribution
D
−→ convergence in distribution
a.s.
−→ almost sure convergence
P
−→ convergence in probability
CLT central limit theorem
δ jk Kronecker symbol: 1/0 for j = k/ j , k
δa Dirac mass at a
e j jth vector of a canonical basis
ESD empirical spectral distribution
Γµ support set of a finite measure µ
I(·) indicator function
Ip p-dimensional identity matrix
LSD limiting spectral distribution
MP Marčenko-Pastur

N(µ,Σ)
multivariate Gaussian distribution with mean µ and
covariance matrix Σ

oP(1), OP(1), oa.s(1), Oa.s.(1) stochastic order symbols
PSD population spectral distribution
u, X, Σ, etc. vectors and matrices are boldfaced

v
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Introduction

1.1 Large dimensional data and new asymptotic statistics

In a multivariate analysis problem, we are given a sample x1, x2, . . . , xn of random ob-
servations of dimension p. Statistical methods such as Principal Components Analysis
have been developed since the beginning of the 20th century. When the observations are
Gaussian, some nonasymptotic methods exist such as Student’s test, Fisher’s test or the
analysis of variance. However in most of applications, observations are non Gaussian at
least in part so that nonasymptotic results become hard to obtain and statistical methods
are built using limiting theorems on model statistics.

Most of these asymptotic results are derived under the assumption that the data dimen-
sion p is fixed while the sample size n tends to infinity (large sample theory). This theory
has been adopted by most of practitioner until very recently when they are faced with a
new challenge, the analysis of large dimensional data.

Large dimensional data appear in various fields due to different reasons. In finance, as
a consequence of the generalisation of Internet and electronic commerce supported by
an exponentially increasing power of computing, on-line data from markets around the
world are accumulated in a giga-octets basis every day. In genetic experiments such as
micro-arrays, it becomes possible to record the expression of several thousands of genes
from a single tissue. Table 1.1 displays some typical data dimensions and sample sizes.
We can see from this table that the data dimension p is far from “usual” situations where
p is commonly seen smaller then 10. We refer this new type of data as large dimensional
data.

It has been observed since a long time that several well-known methods in multivariate
analysis become inefficient or even misleading when the data dimension p is not as small

Table 1.1 Examples of large dimensional data.
data dimension p sample size n y = p/n

portfolio ∼ 50 500 0.1
climate survey 320 600 0.21
speech analysis a · 102 b · 102 ∼ 1
ORL face data base 1440 320 4.5
micro-arrays 1000 100 10

1



2 Introduction

as say several tens. A seminar example is provided by Dempster in 1958 where he estab-
lished the inefficiency of Hotellings’ T 2 in such cases and provided a remedy (named as a
non-exact test). However, by that time no statistician was able to discover the fundamental
reasons for such break-down of the well-established methods.

To deal with such large-dimensional data, a new area in asymptotic statistics has been
developed where the data dimension p is no more fixed but tends to infinity together with
the sample size n. We call this scheme large dimensional asymptotics. For multivariate
analysis, the problem thus turns out to be which one of the large sample scheme and the
large dimensional scheme is closer to reality? As argued in Huber (1973), some statis-
ticians might say that five samples for each parameter in average are enough for using
large sample asymptotic results. Now, suppose there are p = 20 parameters and we have
a sample of size n = 100. We may consider the case as p = 20 being fixed and n tending
to infinity (large sample asymptotics), p = 2

√
n or p = 0.2n (large dimensional asymp-

totics). So, we have at least three different options to choose for an asymptotic setup. A
natural question is then, which setup is the best choice among the three? Huber strongly
suggested to study the situation of increasing dimension together with the sample size in
linear regression analysis.

This situation occurs in many cases. In parameter estimation for a structured covari-
ance matrix, simulation results show that parameter estimation becomes very poor when
the number of parameters is more than four. Also, it is found that in linear regression
analysis, if the covariates are random (or having measurement errors) and the number of
covariates is larger than six, the behaviour of the estimates departs far away from the theo-
retical values, unless the sample size is very large. In signal processing, when the number
of signals is two or three and the number of sensors is more than 10, the traditional MU-
SIC (MUltivariate SIgnal Classification) approach provides very poor estimation of the
number of signals, unless the sample size is larger than 1000. Paradoxically, if we use
only half of the data set, namely, we use the data set collected by only five sensors, the
signal number estimation is almost hundred-percent correct if the sample size is larger
than 200. Why would this paradox happen? Now, if the number of sensors (the dimension
of data) is p, then one has to estimate p2 parameters ( 1

2 p(p + 1) real parts and 1
2 p(p − 1)

imaginary parts of the covariance matrix). Therefore, when p increases, the number of
parameters to be estimated increases proportional to p2 while the number (2np) of ob-
servations increases proportional to p. This is the underlying reason of this paradox. This
suggests that one has to revise the traditional MUSIC method if the sensor number is
large.

An interesting problem was discussed by Bai and Saranadasa (1996) who theoretically
proved that when testing the difference of means of two high dimensional populations,
Dempster (1958) non-exact test is more powerful than Hotelling’s T 2 test even when
the T 2-statistic is well defined. It is well known that statistical efficiency will be signifi-
cantly reduced when the dimension of data or number of parameters becomes large. Thus,
several techniques of dimension reduction were developed in multivariate statistical anal-
ysis. As an example, let us consider a problem in principal component analysis. If the
data dimension is 10, one may select 3 principal components so that more than 80% of
the information is reserved in the principal components. However, if the data dimension
is 1000 and 300 principal components are selected, one would still have to face a large
dimensional problem. If again 3 principal components only are selected, 90% or even
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more of the information carried in the original data set could be lost. Now, let us consider
another example.

Example 1.1 Let x1, x2, . . . , xn be a sample from p-dimensional Gaussian distribution
Np(0, Ip) with mean zero and unit covariance matrix. The corresponding sample covari-
ance matrix is

Sn =
1
n

n∑
i=1

xix∗i .

An important statistic in multivariate analysis is

Tn = log(det Sn) =

p∑
j=1

log λn, j,

where {λn, j}1≤ j≤p are the eigenvalues of Sn. When p is fixed, λn, j→1 almost surely as
n→∞ and thus Tn→0. Further, by taking a Taylor expansion of log(1 + x), one can show
that √

n
p

Tn
D
−→ N(0, 2),

for any fixed p. This suggests the possibility that Tn remains asymptotically Gaussian for
large p provided that p = O(n). However, this is not the case. Let us see what happens
when p/n→y∈(0, 1) as n→∞. Using results on the limiting spectral distribution of Sn [see
Chapter 2], it is readily seen that almost surely,

1
p

Tn→

∫ b(y)

a(y)

log x
2πyx

[
{b(y) − x}{x − a(y)}

]1/2 dx =
y − 1

y
log(1 − y) − 1 ≡ d(y) < 0 ,

where a(y) = (1 −
√

y)2 and b(y) = (1 +
√

y)2 (details of this calculation of integral are
given in Example 2.11). This shows that almost surely√

n
p

Tn ' d(y)
√

np→−∞.

Thus, any test which assumes asymptotic normality of Tn will result in a serious error.

These examples show that the classical large sample limits are no longer suitable for
dealing with large dimensional data analysis. Statisticians must seek out new limiting
theorems to deal with large dimensional statistical problems. In this context, the theory of
random matrices (RMT) proves to be a powerful tool for achieving this goal.

1.2 Random matrix theory

RMT traces back to the development of quantum mechanics in the 1940s and the early
1950s. In this field, the energy levels of a system are described by eigenvalues of a Her-
mitian operator A on a Hilbert space, called the Hamiltonian. To avoid working with an
infinite dimensional operator, it is common to approximate the system by discretisation,
amounting to a truncation, keeping only the part of the Hilbert space that is important to
the problem under consideration. Thus A becomes a finite but large dimensional random
linear operator, i.e. a large dimensional random matrix. Hence, the limiting behaviour
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of large dimensional random matrices attracts special interest among experts in quantum
mechanics and many limiting laws were discovered during that time. For a more detailed
review on applications of RMT in quantum mechanics and other related areas in physics,
the reader is referred to the Book Random Matrices by Mehta (2004).

Since the late 1950s, research on the limiting spectral properties of large dimensional
random matrices has attracted considerable interest among mathematicians, probabilists
and statisticians. One pioneering work is the semicircular law for a Gaussian (or Wigner)
matrix , due to E. Wigner (1955; 1958). He proved that the expected spectral distribu-
tion of a large dimensional Wigner matrix tends to the semicircular law. This work was
later generalised by Arnold (1967, 1971) and Grenander (1963) in various aspects. On
the another direction related to the class of Gaussian Wishart matrices, or more generally,
the class of sample covariance matrices, the breakthrough work was done in Marčenko
and Pastur (1967) and Pastur (1972, 1973) where the authors discovered the Marčenko-
Pastur law under fairly general conditions. The asymptotic theory of spectral analysis of
large dimensional sample covariance matrices was later developed by many researchers
including Bai et al. (1986), Grenander and Silverstein (1977), Jonsson (1982), Wachter
(1978), Yin (1986), and Yin and Krishnaiah (1983). Also, Bai et al. (1986, 1987), Sil-
verstein (1985), Wachter (1980), Yin (1986), and Yin and Krishnaiah (1983) investigated
the limiting spectral distribution of the multivariate Fisher matrix, or more generally, of
products of random matrices (a random Fisher matrix is the product of a sample covari-
ance matrix by the inverse of another independent sample covariance matrix). In the early
1980s, major contributions on the existence of limiting spectral distributions and their
explicit forms for certain classes of random matrices were made. In particular, Bai and
Yin (1988) proved that the spectral distribution of a sample covariance matrix (suitably
normalised) tends to the semicircular law when the dimension is relatively smaller than
the sample size. In recent years, research on RMT is turning toward the second order lim-
iting theorems, such as the central limit theorem for linear spectral statistics, the limiting
distributions of spectral spacings and extreme eigenvalues.

1.3 Eigenvalue statistics of large sample covariance matrices

This book is about the theory of large sample covariance matrices and their applications
to high-dimensional statistics. Let x1, x2, . . . , xn be a sample of random observations of
dimension p. The population covariance matrix is denoted by Σ = cov(xi). The corre-
sponding sample covariance matrix is defined as

Sn =
1

n − 1

n∑
i=1

(xi − x)(xi − x)∗, (1.1)

where x = n−1 ∑
i xi denotes the sample mean. Almost all statistical methods in multivari-

ate analysis rely on this sample covariance matrix: principle component analysis, canon-
ical correlation analysis, multivariate regressions, one-sample or two-sample hypothesis
testing, factor analysis etc.

A striking fact in multivariate analysis or large dimensional statistics is that many im-
portant statistics are function of the eigenvalues of sample covariance matrices. The statis-
tic Tn in Example 1.1 is of this type and here is yet another example.
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Example 1.2 Let the covariance matrix of a population have the form Σ = Σq + σ2I,
where Σ is p × p and Σq has rank q (q < p). Suppose Sn is the sample covariance matrix
based on a sample of size n drawn from the population. Denote the eigenvalues of Sn by
λ1 ≥ λ2 ≥ · · · ≥ λp. Then the test statistic for the hypothesis H0: rank(Σq) = q against H1:
rank(Σq) > q is given by

Qn =
1

p − q

p∑
j=q+1

λ2
j −

 1
p − q

p∑
j=q+1

λ j

2

.

In other words, the test statistic Qn is the variance of the p− q smallest eigenvalues of Sn.

Therefore, understanding the asymptotic properties of eigenvalue statistics such as Tn

and Qn above has a paramount importance in data analysis when the dimension p is
getting large with respect to the sample size. The spectral analysis of large dimensional
sample covariance matrices from RMT provides powerful tools for the study of such
eigenvalue statistics. For instance, the Marčenko-Pastur law describe the global behaviour
of the p eigenvalues of a sample covariance matrix so that point-wise limits of eigen-
value statistics are determined by integrals of appropriate functions with respect to the
Marčenko-Pastur law, see Example 1.1 for the case of Tn. Moreover, fluctuations of these
eigenvalue statistics are described by central limit theorems which are found in Bai and
Silverstein (2004) and in Zheng (2012). Similarly to the case of classical large sample the-
ory, such CLTs constitute the corner-stones of statistical inference with large dimensional
data.

1.4 Organisation of these notes

In Chapters 2 and 3, the core of fundamental results from RMT regarding sample co-
variance matrices and random Fisher matrices is presented in details. These results are
selected in such a way that they are applied and used in the subsequent chapters of the
book. More specifically, Chapter 2 introduces the limiting spectral distributions of general
sample covariance matrices, namely the Marčenko-Pastur distributions, and the limiting
spectral distributions of random Fisher matrices. Detailed examples of both limits are also
provided. In Chapter 3, the two fundamental CLTs from Bai and Silverstein (2004) and
Zheng (2012) are presented in details. Simple application examples of these CLTs are
given. We also introduce a substitution principle that deals with the effect in the CLTs
induced by the use of adjusted sample sizes ni − 1 in place of the (raw) sample sizes ni in
the definition of sample covariance matrices and Fisher matrices.

The Chapters 4, 5 and 6 develop several large dimensional statistical problems where
the classical large sample methods fail and the new asymptotic methods from the above
RMT provide a valuable remedy. Topics in Chapter 4 and Chapter 5 are classical topics in
multivariate analysis; they are here re-analysed under the large-dimensional scheme. The
last chapter treats a modern topic in large-dimensional statistics.

An appendix is included to introduce the basics on contour integration. The reason is
that in the CLT’s developed in Chapter 3 for linear spectral statistics of sample covari-
ance matrices and of random Fisher matrices, the mean and covariance functions of the
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limiting Gaussian distributions are expressed in terms of contour integrals, and explicit
calculations of such contour integrals frequently appear at various places of this book.

Notes

On the interplay between the random matrix theory and large-dimensional statistics, sup-
plementary information can be found in the excellent introductory papers Bai (2005)
Johnstone (2007) and Johnstone and Titterington (2009).
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Limiting spectral distributions

2.1 Introduction

Let x1, x2, . . . , xn be a sample of random observations of dimension p. The sample covari-
ance matrix is defined as

Sn =
1

n − 1

n∑
i=1

(xi − x)(xi − x)∗ =
1

n − 1

n∑
i=1

xix∗i −
n

n − 1
xx∗, (2.1)

where x = n−1 ∑
i xi denotes the sample mean. Many of traditional multivariate statistics

are functions of the eigenvalues {λk} of the sample covariance matrix Sn. In the most basic
form, such statistics can be written as

Tn =
1
p

p∑
k=1

ϕ(λk) , (2.2)

for some specific function ϕ. Such statistic is called a linear spectral statistic of the sample
covariance matrix Sn. For example, the so-called generalised variance discussed later in
Chapter 4, see Eq.(4.1) is

Tn =
1
p

log |Sn| =
1
p

p∑
k=1

log(λk).

So this particular Tn is a linear spectral statistic of the sample covariance matrix Sn with
“test function” ϕ(x) = log(x).

In two-sample multivariate analysis with say an x-sample and an y-sample, interesting
statistics will still be of the previous form in (2.2), where however the eigenvalues {λk}

will be those of the so-called Fisher matrix Fn. Notice that each of the two examples has
a corresponding sample covariance matrix, say Sx and Sy. The Fisher matrix associated to
these samples is the quotient of the two sample matrices, namely Fn = SxS−1

y (assuming
the later is invertible).

Linear spectral statistics of sample covariance matrices or Fisher matrices are at the
heart of the new statistical tools developed in this book. In this chapter and the next Chap-
ter 3, we introduce the theoretical backgrounds on these statistics. More specifically, this
chapter deals with the first order limits of such statistics, namely to answer the question:

When and how Tn should converge to some limiting value ` as both the dimension p and the sample
size grow to infinity?

7
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Clearly, the question should relate to the “joint limit” of the p eigenvalues {λk}. The formal
concepts to deal with the question are called the empirical spectral distributions and lim-
iting spectral distributions. In this chapter, these distributions for the sample covariance
matrix Sn and the two-sample Fisher matrix Fn are introduced.

2.2 Fundamental tools

This section introduces some fundamental concepts and tools used throughout the book.

2.2.1 Empirical and limiting spectral distributions

Let Mp(C) be the set of p × p matrices with complex-valued elements.

Definition 2.1 Let A ∈ Mp(C) and {λ j}1≤ j≤p, its empirical spectral distribution (ESD)
is

FA =
1
p

p∑
j=1

δλ j ,

where δa denotes the Dirac mass at a point a.

In general, the ESD FA is a probability measure onC; it has support inR (resp. onR+) if
A is Hermitian (resp. nonnegative definite Hermitian). For example, the two-dimensional
rotation

A =

(
0 −1
1 0

)
has eigenvalues ±i so that FA = 1

2 (δ{i} + δ{−i}) is a measure on C, while the symmetry

B =

(
0 1
1 0

)
has eigenvalues ±1 so that FB = 1

2 (δ{1} + δ{−1}) has support on R. In this book, we are
mainly concerned by covariance matrices. Since there are Hermitian and nonnegative
definite, the corresponding ESD’s will have support on R+.

Definition 2.2 Let {An}n≥1 be a sequence from Mp(C). If the sequence of corresponding
ESD’s {FAn }n≥1 vaguely converges to a (possibly defective) measure F, we call F the
limiting spectral distribution (LSD) of the sequence of matrices {An}.

The above vague convergence means that for any continuous and compactly supported
function ϕ, FAn (ϕ) → F(ϕ) as n → ∞. It is well-known that if the LSD F is indeed non
defective, i.e.

∫
F(dx) = 1, the above vague convergence turns into the stronger (usual)

weak convergence, i.e. FAn (ϕ)→ F(ϕ) for any continuous and bounded function ϕ.
When dealing with a sequence of sample covariance matrices {Sn}, their eigenvalues are

random variables and the corresponding ESD’s {FSn } are random probability measures on
R+. A fundamental question in random matrix theory is about whether the sequence {FSn }

has a limit (in probability or almost surely).
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2.2.2 Stieltjes transform

The eigenvalues of a matrix are continuous functions of entries of the matrix. But these
functions have no closed forms when the dimension of the matrix is larger than four. So
special methods are needed for their study. There are three important methods employed
in this area, moment method, Stieltjes transform and orthogonal polynomial decomposi-
tion of the exact density of eigenvalues. For the sake of our exposition, we concentrate
on the Stieltjes transform method which is indeed widely used in the literature of large
dimensional statistics.

We denote by Γµ the support of a finite measure µ on R. Let

C+ :=
{
z ∈ C : =(z) > 0

}
be the (open) upper half complex plan with positive imaginary part.

Definition 2.3 Let µ be a finite measure on the real line. Its Stieltjes transform (also
called Cauchy transform in the literature) is defined as

sµ(z) =

∫
1

x − z
µ(dx) , z ∈ C \ Γµ .

The results of this section are given without proofs; they can be found in textbooks such
as Kreı̆n and Nudel′man (1977).

Proposition 2.4 The Stieltjes transform has the following properties:

(i) sµ is holomorphic on C \ Γµ;
(ii) z ∈ C+ if and only if sµ(z) ∈ C+ ;

(iii) If Γµ ⊂ R+ and z ∈ C+, then zsµ(z) ∈ C+;

(iv) |sµ(z)| ≤
µ(1)

dist(z,Γµ) ∨ |=(z)|
.

The next result is an inversion result.

Proposition 2.5 The mass µ(1) can be recovered through the formula

µ(1) = lim
v→∞
−ivsµ(iv) .

Moreover, for all continuous and compactly supported ϕ: R→ R,

µ(ϕ) =

∫
R

ϕ(x)µ(dx) = lim
v↓0

1
π

∫
R

ϕ(x)=sµ(x + iv)dx .

In particular, for two continuity points a < b of µ,

µ([a, b]) = lim
v↓0

1
π

∫ b

a
=sµ(x + iv)dx .

The next proposition characterises functions that are Stieltjes transforms of bounded
measures on R.

Proposition 2.6 Assume that the following conditions hold for a complex valued func-
tion g(z):

(i) g is holomorphic on C+;
(ii) g(z) ∈ C+ for all z ∈ C+;
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(iii) lim sup
v→∞

|ivg(iv)| < ∞.

Then g is the Stieltjes transform of a bounded measure on R.

Similar to the characterisation of the weak convergence of finite measures by the con-
vergence of their Fourier transforms, Stieltjes transform characterises the vague conver-
gence of finite measures. This a key tool for the study of the ESD’s of random matrices.

Theorem 2.7 A sequence {µn} of probability measures on R converges vaguely to some
positive measure µ (possibly defective) if and only if their Stieltjes transforms {sµn } con-
verges to sµ on C+.

In order to get the weak convergence of {µn}, one checks the vague convergence of the
sequence using this theorem and then to ensure that the limiting measure µ is a probability
measure, i.e. to check µ(1) = 1 through Proposition 2.5 or by some direct observation.

The Stieltjes transform and the RMT are closely related each other. Indeed, the Stieltjes
transform of the ESD FA of a n × n Hermitian matrix A is by definition

sA(z) =

∫
1

x − z
FA(dx) =

1
n

tr(A − zI)−1 , (2.3)

which is the resolvent of the matrix A (up to the factor 1/n). Using a formula for the trace
of an inverse matrix, see Bai and Silverstein (2010, Theorem A.4), we have

sn(z) =
1
n

n∑
k=1

1
akk − z − α∗k(Ak − zI)−1αk

, (2.4)

where Ak is the (n − 1) × (n − 1) matrix obtained from A with the k-th row and column
removed and αk is the k-th column vector of A with the k-th element removed. If the
denominator akk − z − α∗k(Ak − zI)−1αk can be proved to be equal to g(z, sn(z)) + o(1) for
some function g, then a LSD F exists and its Stieltjes transform is the solution to the
equation

s = 1/g(z, s).

Its applications will be discussed in more detail later in the chapter.

2.3 Marčenko-Pastur distributions

The Marčenko-Pastur distribution Fy,σ2 (M-P law) with index y and scale parameter σ
has the density function

py,σ2 (x) =

 1
2πxyσ2

√
(b − x)(x − a), if a ≤ x ≤ b,

0, otherwise,
(2.5)

with an additional point mass of value 1−1/y at the origin if y > 1, where a = σ2(1−
√

y)2

and b = σ2(1 +
√

y)2. Here, the constant y is the dimension to sample size ratio index
and σ2 the scale parameter. The distribution has mean σ2 and variance yσ4. The support
interval has a length of b − a = 4σ2 √y.

If σ2 = 1, the distribution is said to be a standard M-P distribution (then we simplify
the notations to Fy and py for the distribution and its density function). Three standard
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M-P density functions for y ∈ { 18 ,
1
4 ,

1
2 } are displayed on Figure 2.1. In particular, the

density function behaves as
√

x − a and
√

b − x at the boundaries a and b, respectively.

Figure 2.1 Density plots of the Marčenko-Pastur distributions with indexes y = 1/8 (dashed
line), 1/4 (dotted line) and 1/2 (solid line).

Example 2.8 For the special case of y = 1, the density function is

p1(x) =

{ 1
2πx

√
x(4 − x), if 0 < x ≤ 4,

0, otherwise.
(2.6)

In particular, the density is unbounded at the origin.

It is easy to see that when the index y tends to zero, the M-P law Fy shrinks to the
Dirac mass δ1. More intriguing is the following fact (that can be easily checked though):
if Xy follows the M-P distribution Fy, then as y → 0, the sequence 1

2
√

y (Xy − 1) weakly

converges to Wigner’s semi-circle law with density function π−1
√

1 − x2 for |x| ≤ 1.

2.3.1 The M-P law for independent vectors without cross-correlations

Notice first that regarding limiting spectral distributions discussed in this chapter, one may
ignore the rank-1 matrix xx∗ in the definition of the sample covariance matrix and define
the sample covariance matrix to be

Sn =
1
n

n∑
i=1

xix∗i . (2.7)

Indeed, by Weilandt-Hoffman inequality, the eigenvalues of the two forms of sample co-
variance matrix are interlaced each other so that they have a same LSD (when it exists).

As a notational ease, it is also convenient to summarise the n sample vectors into a p×n
random data matrix X = (x1, . . . , xn) so that Sn = 1

n XX∗.
Marčenko and Pastur (1967) first finds the LSD of the large sample covariance matrix

Sn. Their result has been extended in various directions afterwards.
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Theorem 2.9 Suppose that the entries {xi j} of the data matrix X are i.i.d. complex ran-
dom variables with mean zero and variance σ2, and p/n → y ∈ (0,∞). Then almost
surely, FSn weakly converges to the MP law Fy,σ2 (2.5).

This theorem was found as early as in the late sixties (convergence in expectation).
However its importance for large-dimensional statistics has been recognised only recently
at the beginning of this century. To understand its deep influence on multivariate analysis,
we plot in Figure 2.2 sample eigenvalues from i.i.d. Gaussian variables {xi j}. In other
words, we use n = 320 i.i.d. random vectors {xi}, each with p = 40 i.i.d. standard Gaussian
coordinates. The histogram of p = 40 sample eigenvalues of Sn displays a wide dispersion
from the unit value 1. According to the classical large-sample asymptotic (assuming n =

320 is large enough), the sample covariance matrix Sn should be close to the population
covariance matrix Σ = Ip = E xix∗i . As eigenvalues are continuous functions of matrix
entries, the sample eigenvalues of Sn should converge to 1 (unique eigenvalue of Ip). The
plot clearly assesses that this convergence is far from the reality. On the same graph is also
plotted the Marčenko-Pastur density function py with y = 40/320 = 1/8. The closeness
between this density and the sample histogram is striking.

Figure 2.2 Eigenvalues of a sample covariance matrix with standard Gaussian entries, p = 40
and n = 320. The dashed curve plots the M-P density py with y = 1/8 and the vertical bar
shows the unique population unit eigenvalue.

Since the sample eigenvalues deviate significantly from the population eigenvalues, the
sample covariance matrix Sn is no more a reliable estimator of its population counter-part
Σ. This observation is indeed the fundamental reason for that classical multivariate meth-
ods break down when the data dimension is a bit large compared to the sample size. As an
example, consider Hotelling’s T 2 statistic which relies on S−1

n . In large-dimensional con-
text (as p = 40 and n = 320 above), S−1

n deviates significantly from Σ−1. In particular, the
wider spread of the sample eigenvalues implies that Sn may have many small eigenvalues,
especially when p/n is close to 1. For example, for Σ = σ2Ip and y = 1/8, the smallest
eigenvalue of Sn is close to a = (1 −

√
y)2σ2 = 0.42σ2 so that the largest eigenvalue of

S−1
n is close to a−1σ−2 = 1.55σ−2, a 55% over-spread to the population value σ−2. When
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the data to sample size increases to y = 0.9, the largest eigenvalue of S−1
n becomes close

to 380σ−2! Clearly, S−1
n is completely unreliable as an estimator of Σ−1.

2.3.2 How the Marčenko-Pastur law appears in the limit?

As said in Introduction, most of results in RMT require advanced mathematical tools
which are exposed in details elsewhere. Here an explanation why the LSD should be the
Marčenko-Pastur distribution is given using Stieltjes transform.

Throughout this book, for a complex number z (or a negative real number),
√

z denotes
its square root with positive imaginary part. Without loss of generality, the scale parameter
is fixed to σ2 = 1. Let z = u + iv with v > 0 and s(z) be the Stieltjes transform of the M-P
distribution Fy. From the definition of the density function py in (2.5), it is not difficult to
find that the Stieltjes transform of the M-P distribution Fy equals

s(z) =
(1 − y) − z +

√
(z − 1 − y)2 − 4y

2yz
. (2.8)

It is also important to observe that s is a solution in C+ to the quadratic equation

yzs2 + (z + y − 1)s + 1 = 0. (2.9)

Consider the Stieltjes transform sn(z) of the ESD of Sn sn(z) = p−1tr(Sn − zIp)−1. Theo-
rem 2.9 is proved if almost surely sn(z) → s(z) for every z ∈ C+. Assume that this con-
vergence takes place: what should then be the limit? Since for fixed z, {sn(z)} is bounded,
E sn(z)→ s(z) too.

By Eq.(2.4),

sn(z) =
1
p

p∑
k=1

1
1
nα
′
kαk − z − 1

n2α
′
kX∗k( 1

n XkX∗k − zIp−1)−1Xkαk
, (2.10)

where Xk is the matrix obtained from X with the k-th row removed and α′k (n×1) is the k-th
row of X. Assume also that all conditions are fulfilled so that the p denominators converge
almost surely to their expectations, i.e. the (random) errors caused by this approximation
can be controlled to be negligible for large p and n. First,

E
1
n
α′kαk =

1
n

n∑
j=1

|xk j|
2 = 1.

Next,

E
1
n2α

′
kX∗k(

1
n

XkX∗k − zIp−1)−1Xkαk

=
1
n2 E tr X∗k(

1
n

XkX∗k − zIp−1)−1Xkαkα
′
k

=
1
n2 tr

{[
EX∗k(

1
n

XkX∗k − zIp−1)−1Xk

] [
Eαkα

′
k

]}
=

1
n2 tr

[
EX∗k(

1
n

XkX∗k − zIp−1)−1Xk

]
=

1
n2 E tr

[
X∗k(

1
n

XkX∗k − zIp−1)−1Xk

]
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=
1
n2 E tr

[
(
1
n

XkX∗k − zIp−1)−1XkX∗k

]
.

Note that 1
n XkX∗k is a sample covariance matrix close to Sn (with one vector xk re-

moved). Therefore,

1
n2 E tr

[
(
1
n

XkX∗k − zIp−1)−1XkX∗k

]
'

1
n2 E tr

[
(
1
n

XX∗ − zIp)−1XX∗
]

=
1
n
E tr

[
(
1
n

XX∗ − zIp)−1 1
n

XX∗
]

=
1
n
E tr

[
Ip + z(

1
n

XX∗ − zIp)−1
]

=
p
n

+ z
p
n
E sn(z) .

Collecting all these derivations, the expectation of the denominators equal to (up to neg-
ligible terms)

1 − z −
{ p

n
+ z

p
n
E sn(z)

}
.

On the other hand, the denominators in Eq.(2.10) are bounded above and away from 0
and converge almost surely, the convergence also holds in expectation by the dominating
convergence theorem. It is then seen that when p → ∞, n → ∞ and p/n → y > 0, the
limit s(z) of E sn(z) satisfies the equation

s(z) =
1

1 − z − {y + yzs(z)}
.

This is indeed Eq.(2.9) which characterises the Stieltjes transform of the M-P distribution
Fy with index y.

2.3.3 Integrals and moments of the M-P law

It is important to evaluate the integrals of a smooth function f with respect to the standard
M-P law in (2.5).

Proposition 2.10 For the standard Marčenko-Pastur distribution Fy in (2.5) with index
y > 0 and σ2 = 1, it holds for any function f analytic on a domain containing the support
interval [a, b] = [(1 ∓

√
y)2],∫

f (x)dFy(x) = −
1

4πi

∮
|z|=1

f
(
|1 +

√
yz|2

)
(1 − z2)2

z2(1 +
√

yz)(z +
√

y)
dz. (2.11)

This proposition is a corollary of a stronger result, Theorem 2.23, that will be estab-
lished in Section 2.5.

Example 2.11 Logarithms of eigenvalues are widely used in multivariate analysis. Let
f (x) = log(x) and assume 0 < y < 1 to avoid null eigenvalues. We will show that∫

log(x)dFy(x) = −1 +
y − 1

y
log(1 − y) . (2.12)
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Indeed, by (2.11),∫
log(x)dFy(x) = −

1
4πi

∮
|z|=1

log
(
|1 +

√
yz|2

)
(1 − z2)2

z2(1 +
√

yz)(z +
√

y)
dz

= −
1

4πi

∮
|z|=1

log
(
1 +
√

yz
)

(1 − z2)2

z2(1 +
√

yz)(z +
√

y)
dz

−
1

4πi

∮
|z|=1

log
(
1 +
√

yz̄
)

(1 − z2)2

z2(1 +
√

yz)(z +
√

y)
dz.

Call the two integrals A and B. For both integrals, the origin is a pole of degree 2, and
−
√

y is a simple pole (recall that y < 1). The corresponding residues are respectively

log
(
1 +
√

yz
)

(1 − z2)2

z2(1 +
√

yz)

∣∣∣∣∣∣∣∣
z=−
√

y

=
1 − y

y
log(1 − y) ,

and

∂

∂z

log
(
1 +
√

yz
)

(1 − z2)2

(1 +
√

yz)(z +
√

y)

∣∣∣∣∣∣∣∣
z=0

= 1 .

Hence by the residue theorem,

A = −
1
2

{
1 − y

y
log(1 − y) + 1

}
.

Furthermore,

B = −
1

4πi

∮
|z|=1

log
(
1 +
√

yz̄
)

(1 − z2)2

z2(1 +
√

yz)(z +
√

y)
dz

= +
1

4πi

∮
|ξ|=1

log
(
1 +
√

yξ
)

(1 − 1/ξ2)2

1
ξ2 (1 +

√
y/ξ)(1/ξ +

√
y)
· −

1
ξ2 dξ (with ξ = z̄ = 1/z)

= A .

Hence, the whole integral equals 2A.

Example 2.12 (mean of the M-P law). We have for all y > 0,∫
xdFy(x) = 1 . (2.13)

This can be found in a way similar to Example 2.11. There is however another more direct
proof of the result. Indeed almost surely, we have by the weak convergence of the ESD,
p−1 tr(Sn)→

∫
xdFy(x). On the other hand,

1
p

tr(Sn) =
1
pn

n∑
i=1

tr[xix∗i ] =
1
pn

n∑
i=1

p∑
j=1

|xi j|
2 .

By the strong law of large numbers, the limit is E |x11|
2 = 1.

For a monomial function f (x) = xk of arbitrary degree k, the residue method of Propo-
sition 2.10 becomes inefficient and a more direct calculation is needed.
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Proposition 2.13 The moments of the standard M-P law (σ2 = 1) are

αk :=
∫

xkdFy(x) =

k−1∑
r=0

1
r + 1

(
k
r

)(
k − 1

r

)
yr.

Proof By definition,

αk =
1

2πy

∫ b

a
xk−1

√
(b − x)(x − a)dx

=
1

2πy

∫ 2
√

y

−2
√

y
(1 + y + z)k−1

√
4y − z2dz (with x = 1 + y + z)

=
1

2πy

k−1∑
`=0

(
k − 1
`

)
(1 + y)k−1−`

∫ 2
√

y

−2
√

y
z`

√
4y − z2dz

=
1

2πy

[(k−1)/2]∑
`=0

(
k − 1

2`

)
(1 + y)k−1−2`(4y)`+1

∫ 1

−1
u2`
√

1 − u2du,

(by setting z = 2
√

yu)

=
1

2πy

[(k−1)/2]∑
`=0

(
k − 1

2`

)
(1 + y)k−1−2`(4y)`+1

∫ 1

0
w`−1/2

√
1 − wdw

(setting u =
√

w)

=
1

2πy

[(k−1)/2]∑
`=0

(
k − 1

2`

)
(1 + y)k−1−2`(4y)`+1

∫ 1

0
w`−1/2

√
1 − wdw

=

[(k−1)/2]∑
`=0

(k − 1)!
`!(` + 1)!(k − 1 − 2`)!

y`(1 + y)k−1−2`

=

[(k−1)/2]∑
`=0

k−1−2`∑
s=0

(k − 1)!
`!(` + 1)!s!(k − 1 − 2` − s)!

y`+s

=

[(k−1)/2]∑
`=0

k−1−`∑
r=`

(k − 1)!
`!(` + 1)!(r − `)!(k − 1 − r − `)!

yr

=
1
k

k−1∑
r=0

(
k
r

)
yr

min(r,k−1−r)∑
`=0

(
s
`

)(
k − r

k − r − ` − 1

)

=
1
k

k−1∑
r=0

(
k
r

)(
k

r + 1

)
yr =

k−1∑
r=0

1
r + 1

(
k
r

)(
k − 1

r

)
yr.

�

In particular, α1 = 1, α2 = 1 + y and the variance of the M-P law equals y.

2.4 Generalised Marčenko-Pastur distributions

In Theorem 2.9, the population covariance matrix has the simplest form Σ = σ2Ip. In
order to consider a general population covariance matrix Σ, we make the following as-
sumption: the observation vectors {yk}1≤k≤n can be represented as yk = Σ1/2xk where the
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xk’s have i.i.d. components as in Theorem 2.9 and Σ1/2 is any nonnegative square root of
Σ. The associated sample covariance matrix is

B̃n =
1
n

n∑
k=1

yky∗k = Σ1/2

1
n

n∑
k=1

xkx∗k

Σ1/2 = Σ1/2SnΣ
1/2 . (2.14)

Here Sn still denotes the sample covariance matrix in (2.7) with i.i.d. components. Note
that the eigenvalues of B̃n are the same as the product SnΣ.

The following result extends Theorem 2.9 to random matrices of type Bn = SnTn for
some general nonnegative definite matrix Tn. Such generalisation will be also used for the
study of random Fisher matrices where Tn will be the inverse of an independent sample
covariance matrix.

Theorem 2.14 Let Sn be the sample covariance matrix defined in (2.7) with i.i.d. com-
ponents and let (Tn) be a sequence of nonnegative definite Hermitian matrices of size
p × p. Define Bn = SnTn and assume that

(i) The entries (x jk) of the data matrix X = (x1, . . . , xn) are i.i.d. with mean zero and
variance 1;

(ii) The data dimension to sample size ratio p/n→ y > 0 when n→ ∞;
(iii) The sequence (Tn) is either deterministic or independent of (Sn);
(iv) Almost surely, the sequence (Hn = FTn ) of the ESD of (Tn) weakly converges to a

nonrandom probability measure H.

Then almost surely, FBn weakly converges to a nonrandom probability measure Fy,H .
Moreover its Stieltjes transform s is implicitly defined by the equation

s(z) =

∫
1

t(1 − y − yzs(z)) − z
dH(t), z ∈ C+. (2.15)

Several important comments are in order. First, it has been proved that the above im-
plicit equation has an unique solution as functions from C+ onto itself. Second, the solu-
tion s has no close-form in general and all information about the LSD Fc,H is contained
in this equation.

There is however a better way to present the fundamental equation (2.15). Consider for
Bn a companion matrix

Bn =
1
n

X∗TnX,

which is of size n × n. Both matrices share the same non-null eigenvalues so that their
ESD satisfy

nFBn − pFBn = (n − p)δ0 .

Therefore when p/n → y > 0, FBn has a limit Fc,H if and only if FBn has a limit Fc,H . In
this case, the limits satisfies

Fc,H − yFc,H = (1 − y)δ0 ,

and their respective Stieltjes transforms s and s are linked each other by the relation

s(z) = −
1 − y

z
+ ys(z) .
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Substituting s for s in (2.15) yields

s = −

(
z − y

∫
t

1 + ts
dH(t)

)−1

.

Solving in z leads to

z = −
1
s

+ y
∫

t
1 + ts

dH(t) , (2.16)

which indeed defines the inverse function of s.
Although the fundamental equations (2.15) and (2.16) are equivalent each other, we call

(2.15) Marčenko-Pastur equation and (2.15) Silverstein equation for historical reasons. In
particular, the inverse map given by Silverstein’s equation will be of primary importance
for the characterisation of the support of the LSD. Moreover, many inference methods for
the limiting spectral distribution H of the population are based on Silverstein equation.

Notice that in most discussions so far on the Stieltjes transform sµ of a probability
measure µ on the real line (such as s for the LSD Fy,H), the complex variable z is restricted
to the upper complex plane C+. However, such Stieltjes transform is in fact defined on the
whole open set C \ Γµ where it is analytic, see Proposition 2.4. The restriction to C+

is mainly for mathematical convenience in that sµ is a one-to-one map on C+. This is
however not a limitation since properties of sµ established on C+ are easily extended to
the whole domain C \ Γµ by continuity. As an example, both Marčenko-Pastur equation
and Silverstein’s equation are valid for the whole complex plane excluding the support set
Γ of the LSD.

Furthermore, the LSD Fy,H and its companion Fy,H will be called generalised Marčenko-
Pastur distributions with index (y,H). In the case where Tn = Σ, the LSD H of Σ is called
the population spectral distribution, or simply PSD. For instance, a discrete PSD H with
finite support {a1, . . . , ak} ⊂ R+ is of form

H =

k∑
j=1

t jδa j , (2.17)

where t j > 0 and t1 + · · ·+ tk = 1. This means that the population covariance matrix Σ has
approximately eigenvalues (a j)1≤ j≤k of multiplicity {[pt j]}, respectively.

Remark 2.15 The standard M-P distribution is easily recovered from the Marčenko-
Pastur equations. In this case, Tn = Σ = Ip so that the PSD H = δ1 and Eq. (2.15)
becomes

s(z) =
1

1 − y − z − yzs(z)
,

which characterises the standard M-P distribution. This is also the unique situation where
s possesses a close form and by inversion formula, a density function can be obtained for
the corresponding LSD.

Except this simplest case, very few is known about the LSD Fy,H . An exception is a
one-to-one correspondence between the families of their moments given in §2.4.1. An
algorithm is also proposed later to compute numerically the density function of the LSD
Fy,H .
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2.4.1 Moments and support of a generalised M-P distribution

Lemma 2.16 The moments α j =
∫

x jdFy,H(x), j ≥ 1 of the LSD Fy,H are linked to the
moments β j =

∫
t jdH(t) of the PSD H by

α j = y−1
∑

yi1+i2+···+i j (β1)i1 (β2)i2 · · · (β j)i jφ
( j)
i1,i2,··· ,i j

(2.18)

where the sum runs over the following partitions of j:

(i1, . . . , i j) : j = i1 + 2i2 + · · · + ji j, i` ∈ N,

and φ( j)
i1,i2,··· ,i j

is the multinomial coefficient

φ
( j)
i1,i2,··· ,i j

=
j!

i1!i2! · · · i j!( j + 1 − (i1 + i2 + · · · + i j))!
. (2.19)

This lemma can be proved using the fundamental equation (2.15). As an example, for
the first three moments, we have

α1 = β1, α2 = β2 + yβ2
1, α3 = β3 + 3yβ1β2 + y2β3

1.

In particular for the standard M-P law, H = δ{1} so that β j ≡ 1 for all j ≥ 0. Therefore,
α1 = 1, α2 = 1 + y and α3 = 1 + 3y + y2 as discussed in Section 2.3.3.

In order to derive the support of the LSD Fy,H , it is sufficient to examine the support of
the companion distribution Fy,H . Recall that its Stieltjes transform s(z) can be extended to
all z < ΓFy,H

. In particular, for real x outside the support ΓFy,H
, s(x) is differential and in-

creasing so that we can define an functional inverse s−1. Moreover, the form of this inverse
is already given in Eq. (2.16). It is however more convenient to consider the functional
inverse ψ of the function α : x 7→ −1/s(x). By (2.16), this inverse function is

ψ(α) = ψy,H(α) = α + yα
∫

t
α − t

dH(t) . (2.20)

It can be checked that this inverse is indeed well-defined for all α < ΓH .

Proposition 2.17 If λ < ΓFc,H
, then s(λ) , 0 and α = −1/s(λ) satisfies

(i) α < ΓH and α , 0 (so that ψ(α) is well-defined);
(ii) ψ′(α) > 0.

Conversely, if α satisfies (i)-(ii), then λ = ψ(α) < ΓFc,H
.

Therefore, Proposition 2.17, establishes the relationship between the supports of the
PSD H and of the companion LSD Fc,H . It is then possible to determine the support of
Fc,H by looking at intervals where ψ′ > 0.

Example 2.18 Consider the LSD Fy,H with indexes y = 0.3 and H the uniform distribu-
tion on the set {1, 4, 10}. Figure 2.3 displays the corresponding ψ function. The function is
strictly increasing on the following intervals: (−∞, 0), (0, 0.63), (1.40, 2.57) and (13.19,
∞). According to Proposition 2.17, we find that

Γc
Fy,H
∩ R∗ = (0, 0.32) ∪ (1.37, 1.67) ∪ (18.00, ∞).
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Hence, taking into account that 0 belongs to the support of Fy,H , we have

ΓFy,H
= {0} ∪ [0.32, 1.37] ∪ [1.67, 18.00].

Therefore, the support of the LSD Fy,H is [0.32, 1.37] ∪ [1.67, 18.00].
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Figure 2.3 The function ψ0.3,H where H is the uniform distribution on {1, 4, 10}. The dots show
the zeros of the derivative and the empty intervals on the broken vertical line on the left are the
support of F0.3,H .

2.4.2 Numerical computation of a generalised M-P density function

Recall that the Stieltjes transform s of the LSD Fy,H is linked to the companion Stieltjes
transform s via the relationship

s =
1
y

s +
1 − y

yz
.

Let fy,H denote the density function of Fy,H . By the inversion formula, we have for all
x > 0,

fy,H(x) =
1
π

lim
ε→0+

=s(x + iε) =
1
yπ

lim
ε→0+

=s(x + iε).

Numerical approximation of fy,H(x) can then be obtained via the Stieltjes transform s(x +

iε) with very small positive imaginary part, e.g. ε = 10−6.
It remains to approximate the Stieltjes transform and this will be done using the funda-

mental Silverstein equation (2.16). Rewriting the equation into the form

s := A(s) =
1

−z + y
∫

t
1+ts(z) dH(t)

. (2.21)
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For a given z ∈ C+, s is then a fixed point of the map A. Moreover, according to the general
random matrix theory, such fixed point exists and is unique on C+. Therefore, s can be
found by simply iterating the map A till convergence with an arbitrary point s0 ∈ C

+.
This is referred as the fixed-point algorithm for the numerical computation of the Stieltjes
transform of a generalised Marčenko-Pastur distributin.

Example 2.19 Consider the LSD Fy,H defined in Example 2.18. The computed density
function using the above fixed-point algorithm is shown on Figure 2.4. One recovers per-
fectly the two intervals [0.32,1.37] and [1.67,18.00] of the support. Loosely speaking, the
first interval is due to the unit population eigenvalue while the later is due to a mixture
effect from the other two population eigenvalues 4 and 10.

Figure 2.4 The density function for the LSD F0.3,H of Example 2.18 where H is the uniform
distribution on {1, 4, 10}. The support has two intervals: [0.32,1.37] and [1.67,18.00].

Example 2.20 Consider a continuous PSD H defined as the LSD of the Toeplitz matrix
Σ = (2−|i− j|)1≤i, j≤p (p → ∞) and y = 0.2. The approximate LSD density f 1

2 ,H
is given on

Figure 2.5. The support of this LSD is a positive compact interval.

2.4.3 Nonparametric estimation of a generalised M-P density function

In a statistical context, the dimension p and the sample size n are both known so that the
ratio y can be approximated by p/n. However, the PSD H is unknown and the previous
fixed-point algorithm cannot be used to approximate the LSD density fy,H . One might first
think of an estimation method of H and then compute the LSD density.

Here we present a method using kernel estimation. Indeed, the sample eigenvalues
λ1, . . . , λp are directly available from the sample covariance matrix Bn. A natural kernel
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Figure 2.5 Limiting spectral density f 1
2 ,H

where H is the LSD of a Toeplitz matrix Σ =

(2−|i− j|)1≤i, j≤p (p→ ∞).

estimator of the LSD density fy,H is therefore

f̂y,H(x) =
1
ph

p∑
j=1

K
(

x − λ j

h

)
, (2.22)

where K is a bounded and nonnegative kernel function satisfying∫
K(x)dx = 1,

∫
|K′(x)|dx < ∞. (2.23)

The estimator f̂y,H is expected to have good asymptotic properties although a rigorous
proof of the fact is not straightforward due to the fact that the sample eigenvalues {λ j} are
dependent.

Theorem 2.21 In addition to the assumptions in Theorem 2.14, assume that

(i) as n→ ∞, the window size h = h(n)→ 0 satisfying lim nh5/2 = ∞;
(ii) E X16

11 < ∞;
(iii) the sequence {Tn} is bounded in spectral norm; and
(iv) the LSD Fy,H has a compact support [u1, u2] with u1 > 0.

Then

f̂y,H(x)→ fy,H(x) in probability and uniformly in x ∈ [u1, u2].

Example 2.22 Let p = 500, n = 1000 and we simulate the data with Tn = (0.4|i− j|)1≤i, j≤p

and xi j’s are i.i.d N(0, 1)-distributed. Figure 2.6 plots a kernel estimate f̂y,H of the LSD
density function.

2.5 LSD for random Fisher matrices

For testing the equality between the variances of two Gaussian populations, a Fisher statis-
tic is used which has the form S 2

1/S
2
2 where the S 2

i ’s are estimators of the unknown vari-
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Figure 2.6 Kernel estimation of LSD density fy,H with p = 100 and n = 1000.

ances in the two populations. The analogue in the multivariate setting is as follows. Con-
sider two independent samples {x1, . . . , xn1 } and {y1, . . . , yn2 }, both from a p-dimensional
population with i.i.d. components and finite second moment as in Theorem 2.9. Write the
respective sample covariance matrices

S1 =
1
n1

n1∑
k=1

xkx∗k,

and

S2 =
1
n2

n2∑
k=1

yky∗k.

The random matrix

Fn = S1S−1
2 , (2.24)

is called a Fisher matrix where n = (n1, n2) denote the sample sizes. . Since the inverse
S−1

2 is used, it is necessary to impose the condition p ≤ n2 to ensure the invertibility.
In this section, we will derive the LSD of the Fisher matrix Fn.

2.5.1 The Fisher LSD and its integrals

Let s > 0 and 0 < t < 1. The Fisher LSD Fs,t is the distribution with the density function

ps,t(x) =
1 − t

2πx(s + tx)

√
(b − x)(x − a) , a ≤ x ≤ b, (2.25)

with

a = a(s, t) =
(1 − h)2

(1 − t)2 , b = b(s, t) =
(1 + h)2

(1 − t)2 , h = h(s, t) = (s + t − st)1/2 . (2.26)

Moreover, when s > 1, Fs,t has a mass at the origin of value 1 − 1/s while the total mass
of the continuous component above equals 1/s. Figure 2.7 displays the density functions
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Figure 2.7 Density function of the Fisher LSD distribution Fs,t. Left: F 1
5 ,

1
5

with support [ 1
4 , 4].

Right: F7, 1
2

has a continuous component on [4,36] and a mass of value 6
7 at the origin.

of two Fisher LSD, F 1
5 ,

1
5

and F7, 1
2
. In the later case, the distribution has a point mass of

value 6
7 at the origin.

The Fisher LSD share many similarities with the standard Marčenko-Pastur distribu-
tions. Indeed, as easily seen from the definition, the standard M-P distribution Fy is the
degenerate Fisher LSD Fy,0 with parameters (s, t) = (y, 0). With this connection and
by continuity, many distributional calculations done for a Fisher LSD Fs,t can be trans-
ferred to the M-P distribution by setting (s, t) = (y, 0). Notice also that when t → 1−,
a(s, t)→ 1

2 (1−s)2 while b(s, t)→ ∞. The support of the distribution becomes unbounded.

Theorem 2.23 With the notations given in Theorem 2.28, consider an analytic function
f on a domain containing the support interval [a, b]. The following formula of contour
integral is valid:∫ b

a
f (x)dFs,t(x) = −

h2(1 − t)
4πi

∮
|z|=1

f
(
|1+hz|2

(1−t)2

)
(1 − z2)2dz

z(1 + hz)(z + h)(tz + h)(t + hz)
.

Proof Following (2.25),

I =

∫ b

a
f (x)dFs,t(x) =

∫ b

a
f (x)

1 − t
2πx(s + xt)

√
(x − a)(b − x)dx.

With the change of variable

x =
1 + h2 + 2h cos(θ)

(1 − t)2 ,

for θ ∈ (0, π), it holds√
(x − a)(b − x) =

2h sin(θ)
(1 − t)2 , dx =

−2h sin(θ)
(1 − t)2 dθ.

Therefore,

I =
2h2(1 − t)

π

∫ π

0

f
(

(1+h2+2h cos(θ))
(1−t)2

)
sin2(θ)dθ

(1 + h2 + 2h cos(θ))(s(1 − t)2 + t(1 + h2 + 2h cos(θ)))

=
h2(1 − t)

π

∫ 2π

0

f
(

(1+h2+2h cos(θ))
(1−t)2

)
sin2(θ)dθ

(1 + h2 + 2h cos(θ))(s(1 − t)2 + t(1 + h2 + 2h cos(θ)))
.
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Furthermore let z = eiθ, we have

1 + h2 + 2h cos(θ) = |1 + hz|2, sin(θ) =
z − z−1

2i
, dθ =

dz
iz
.

Consequently,

I = −
h2(1 − t)

4πi

∮
|z|=1

f
(
|1+hz|2

(1−t)2

)
(1 − z2)2dz

z3|1 + hz|2(s(1 − t)2 + t|1 + hz|2)
.

Finally on the contour it holds |1 + hz|2 = (1 + hz)(1 + hz−1). Substituting it into the above
equation leads to the desired result. �

Example 2.24 By taking (s, t) = (y, 0) in Theorem 2.23 we obtain the formula for the
Marčenko-Pastur distribution Fy given in Proposition 2.10.

Example 2.25 The first two moments of Fs,t are∫
xdFs,t(x) =

1
1 − t

,

∫
x2dFs,t(x) =

h2 + 1 − t
(1 − t)3 . (2.27)

In particular, the variance equals to h2/(1− t)3. The values are calculated from the integral
formula (2.27) with f (x) = x and f (x) = x2, respectively. Notice that by definition, h > t
always. For the calculation with x2, we have∫ b

a
x2dFs,t(x)

= −
h2(1 − t)

4πi

∮
|z|=1

|1+hz|4

(1−t)4 (1 − z2)2dz

z(1 + hz)(z + h)(tz + h)(t + hz)

= −
h2(1 − t)

4πi

∮
|z|=1

(1 + hz)(z + h)(1 − z2)2

(1 − t)4z3(tz + h)(t + hz)
dz

= −
h2(1 − t)

4πi(1 − t)4th

∮
|z|=1

(1 + hz)(z + h)(1 − z2)2

z3(z + h/t)(z + t/h)
dz

= −
h

2(1 − t)3t

 (1 + hz)(z + h)(1 − z2)2

z3(z + h/t)

∣∣∣∣∣∣
z=−t/h

+
1
2
∂2

∂z2

(1 + hz)(z + h)(1 − z2)2

(z + h/t)(z + t/h)

∣∣∣∣∣∣
z=0


=

−h
2t(1 − t)3

{
(1 − t)(h2 − t)(t2 − h)

ht2 − 2h − (1 + h2 − t − h2/t)
t2 + h2

ht

}
=

h2 + 1 − t
(1 − t)3 .

Finally, the value of the mean can also be guessed as follows. It should be the limit of
E[p−1 tr Fn] that is equal to

E[p−1 tr Fn] = p−1 tr
{
E[S1] · E[S−1

2 ]
}

= E
{
p−1 tr S−1

2

}
.

As the LSD of S2 is the M-P law Ft, the limit equals
∫

x−1dFt(x) = (1 − t)−1.

The lemma below gives two more involved moment calculations which will be used
later in the book.
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Lemma 2.26 Let

c = c(s, t) =
h
√

t
, d = d(t) =

√
t , (2.28)

such that |1 + hz|2 + st−1(1 − t)2 = |c + dz|2 for all z. We have∫ b

a

x
x + s/t

dFs,t(x) =
t

s + t
, (2.29)

and

−

∫ b

a
log

{
(x + s/t)(1 − t)2

}
dFs,t(x) (2.30)

=
1 − t

t
log(c) −

s + t
st

log(c − dt/h) +


(1−s)

s log(c − dh), 0 < s < 1,

0, s = 1,

−
(1−s)

s log(c − d/h), s > 1.

(2.31)

Proof For f (x) = x/(x + s/t) and |z| = 1,

f
(
|1 + hz|2

(1 − t)2

)
=

|1 + hz|2/(1 − t)2

|1 + hz|2/(1 − t)2 + s/t
=
|1 + hz|2

|c + dz|2

=
(1 + hz)(h + z)
(c + dz)(d + cz)

= t
(1 + hz)(h + z)
(h + tz)(t + hz)

.

By (2.27) and noticing that h > t,∫ ∞

0

x
x + s/t

dF s,t(x) = −
h2t(1 − t)

4πi

∮
|z|=1

(1 − z2)2

z(tz + h)2(t + hz)2 dz

=
t

s + t
.

Next for f (x) = − log
{
(x + s/t)(1 − t)2

}
, by (2.27),

−

∫ b

a
log((x + s/t)(1 − t)2)dFs,t(x)

=
h2(1 − t)

4πi

∮
|z|=1

log(|c + dz|2)(1 − z2)2dz
z(z + h)(1 + hz)(t + hz)(tz + h)

=: A + B,

where

A =
h2(1 − t)

4πi

∮
|z|=1

log(c + dz)(1 − z2)2dz
z(z + h)(1 + hz)(t + hz)(tz + h)

,

B =
h2(1 − t)

4πi

∮
|z|=1

log(c + dz̄)(1 − z2)2dz
z(z + h)(1 + hz)(t + hz)(tz + h)

.

By the variable change w = z̄ = 1/z in B, it can be easily proved that B = A. First assume
0 < s < 1 so that

√
s ≤ h < 1. Then

2A =
h2(1 − t)

2πi

∮
|z|=1

log(c + dz)(1 − z2)2dz
z(z + h)(1 + hz)(t + hz)(tz + h)

=
(1 − t)
2πi · t

∮
|z|=1

log(c + dz)(1 − z2)2dz
z(z + h)(z + 1/h)(z + t/h)(z + h/t)
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=
1 − t

t

 log(c + dz)(1 − z2)2

(z + h)(z + 1/h)(z + t/h)(z + h/t)

∣∣∣∣∣∣
z=0

+
log(c + dz)(1 − z2)2

z(z + 1/h)(z + t/h)(z + h/t)

∣∣∣∣∣∣
z=−h

+
log(c + dz)(1 − z2)2

z(z + h)(z + 1/h)(z + h/t)

∣∣∣∣∣∣
z=−t/h


=

1 − t
t

{
log(c) +

t(1 − s)
s(1 − t)

log(c − dh) −
s + t

st
log(c − dt/h)

}
=

1 − t
t

log(c) +
1 − s

s
log(c − dh) −

s + t
st

log(c − dt/h) .

When s > 1, 1 < h ≤
√

s, the pole z = −h is replaced by z = −1/h and the corresponding
residue by

log(c + dz)(1 − z2)2

z(z + h)(z + t/h)(z + h/t)

∣∣∣∣∣∣
z=−1/h

= −
t(1 − s)
s(1 − t)

log(c − d/h),

so that we obtain in this case

2A =
1 − t

t
log(c) −

1 − s
s

log(c − d/h) −
s + t

st
log(c − dt/h) .

Finally, the result for s = 1 is obtained by continuity. �

2.5.2 Derivation of the LSD of the Fisher matrix Fn

The LSD of Fn in (2.24) will be derived under the conditions p/n1 → y1 > 0 and
p/n1 → y2 ∈ (0, 1). By Theorem 2.9, almost surely FS2 converges to the Marčenko-
Pastur distribution Fy2 with index y2. It follows that FS−1

2 converges to a distribution H
which equals to the image of Fy2 by the transformation λ 7→ 1/λ on (0,∞). By applying
theorem 2.14 with T = S−1

2 , it follows that the sequence (Fn) has a LSD denoted by µ.
Let s be its Stieltjes transform and s be the companion Stieltjes transform (of the measure
y1µ + (1 − y1)δ0). Then s satisfies the Marčenko-Pastur equation

z = −
1
s

+ y1

∫
t

1 + ts
dH(t) = −

1
s

+ y1

∫
1

t + s
dFy2 (t).

This identity can be rewritten as

z +
1
s

= y1s2(−s̄),

where s2(z) denotes the Stieltjes transform of the M-P distribution Fy2 . Using its value
given in Eq.(2.8) leads to

z̄ +
1
s̄

= y1
1 − y2 + s̄ +

√
(1 + y2 + s̄)2 − 4y2

−2y2 s̄
.

Take the square and after some arrangements,

z̄(y1 + y2z̄)s̄2 + [z̄(y1 + 2y2 − y1y2) + y1 − y2
1]s̄ + y1 + y2 − y1y2 = 0 .

By taking the conjugate and solving in s leads to, with h2 = y1 + y2 − y1y2,

s(z) = −
z(h2 + y2) + y1 − y2

1 − y1
√

(z(1 − y2) − 1 + y1)2 − 4zh2

2z(y1 + y2z)
.
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Moreover, the density function of the LSD µ can be found as follows:

py1,y2 (x) =
1
π
=(s(x + i0)) =

1
y1π
=(s(x + i0))

=
1 − y2

2πx(y1 + y2x)

√
(b − x)(x − a) ,

for x ∈ [a, b], a finite interval depending on the indexes y1 and y2 only. Furthermore, in
case of y1 > 1, intuitively S1 has p− n1 null eigenvalues while S2 is of full rank, F should
also has p − n1 null eigenvalues. Consequently, the LSD µ should have a point mass of
value 1 − 1/y1 at the origin. This can be rigorously proved with the formula

G({0}) = − lim
z→0+0i

zsG(z) ,

which is valid for any probability measure on [0,∞). Applying to µ yields

µ({0}) = − lim
z→0+0i

zs(z) = 1 −
1
y1
−

1
y1

lim
z→0+0i

zs(z) = 1 −
1
y1
, (2.32)

which proves the conjecture.

Remark 2.27 In case of y1 ≤ 1, the above computation is still valid and the LSD µ has
no mass at the origin.

These results are summarised in the following theorem.

Theorem 2.28 Let Sk, k = 1, 2 be p-th dimensional sample covariance matrices from
two independent samples {xi}1≤i≤n1 and {y j}1≤ j≤n2 of sizes n1 and n2, respectively, both of
the type given in Theorem 2.9 with i.i.d. components of unit variance. Consider the Fisher
matrix Fn = S1S−1

2 and let

n1 → ∞, n2 → ∞, p/n1 → y1 > 0 , p/n2 → y2 ∈ (0, 1) .

Then, almost surely, the ESD of Fn weakly converges to the Fisher LSD Fy1,y2 with param-
eters (y1, y2).

In conclusion, a Fisher LSD is the limiting spectral distribution of a random Fisher
matrix.

Notes

For a general introduction to related random matrix theory, we recommend the mono-
graphs by Tao (2012), Bai and Silverstein (2010), Anderson et al. (2010) and Pastur and
Shcherbina (2011). In particular, Tao (2012) provides an introduction at the graduate level
while the other texts are more specialised. Related to the topics developed in this book,
Bai (1999) gives a quick review of the major tools and idea involved.

The celebrated Marčenko-Pastur distributions as well as the Marčenko-Pastur equation
(2.15) first appeared in Marčenko and Pastur (1967). The Silverstein equation (2.16) es-
tablishing the inverse map of the Stieltjes transform of the LSD is due to J. Silverstein
and appears first in Silverstein and Combettes (1992). As explained in the chapter, this
equation is instrumental for the derivation of many results presented in this book.

Lemma 2.16 can be proved using either the Marčenko-Pastur equation (2.15) or the
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Silverstein equation (2.16). For an alternative proof, see Nica and Speicher (2006, page
143).

Proposition 2.17 is established in Silverstein and Choi (1995). More information on the
support of the LSD Fc,H can be found in this paper. For example, for a finite discrete PSD
H with k masses, the support of the LSD Fc,H has at most k compact intervals.

Theorem 2.21 is due to Jing et al. (2010).
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CLT for linear spectral statistics

3.1 Introduction

In Chapter 2, the sample covariance matrices Sn, Bn and the sample Fisher random matrix
Fn are introduced and their limiting spectral distributions are found under some general
conditions. Let An be one of these sample matrices. In one-sample and two-sample multi-
variate analysis, many statistics are functions of the eigenvalues {λk} of the sample matrix
An of form

Tn =
1
p

p∑
k=1

ϕ(λk) =

∫
ϕ(x)dFAn (x) =: FAn (ϕ) , (3.1)

for some specific function ϕ. Such statistic is called a linear spectral statistic of the sample
matrix An.

Example 3.1 The generalised variance discussed in Chapter 4, see Eq.(4.1) is

Tn =
1
p

log |Sn| =
1
p

p∑
k=1

log(λk).

So Tn is a simple linear spectral statistic of the sample covariance matrix Sn with ϕ(x) =

log(x).

Example 3.2 To test the hypothesis H0 : Σ = Ip that the population covariance matrix is
equal to a given matrix, the log-likelihood ratio statistic (assuming a Gaussian population)
is

LRT1 = tr Sn − log |Sn| − p =

p∑
k=1

[λk − log(λk) − 1] .

This test is detailed in § 5.6.1. The test statistic is thus p-times a linear spectral statistic
of the sample covariance matrix with ϕ(x) = x − log(x) − 1.

Example 3.3 For the two-sample test of the hypothesis H0 : Σ1 = Σ2 that two pop-
ulations have a common covariance matrix, the log-likelihood ratio statistic (assuming
Gaussian populations) is

LRT2 = − log |Ip + αnFn| = −

p∑
k=1

[1 + αn log(λk)] ,

where αn is some constant (depending on the sample sizes). This test is presented in

30
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§ 5.6.4. The test statistic is thus p-times a linear spectral statistic of the random Fisher
matrix with ϕ(x) = − log(1 + αnx).

When the dimension and the sample size tend to infinity in a proportional way, the sam-
ple matrix An has a LSD, say F, as discussed in Chapter 2. Since this LSD has bounded
support, we have then for any continuous function ϕ (as the ones given in the examples
above), FAn (ϕ) → F(ϕ) almost surely. How to characterise the fluctuation of FAn (ϕ)
around its limit F(ϕ)? The central limit theorems in this chapter address this issue.

3.2 CLT for linear spectral statistics of a sample covariance matrix

In this section, we consider the simplest sample covariance matrix Sn defined in (2.7) and
satisfying the conditions in Theorem 2.9, i.e. the p×n data matrix X = (x1, . . . , xn) = (xi j)
is then made with np i.i.d standardised entries with E xi j = 0, E |xi j|

2 = 1 and if the
variables are complex-valued, E x2

i j = 0. The LSD of Sn is known to be the standard
Marčenko-Pastur law Fy with index y = lim p/n. In particular, almost surely, FSn (ϕ) →
Fy(ϕ) for continuous function ϕ.

In order to go a step further, a “natural” way would be to consider the difference
FSn (ϕ)−Fy(ϕ), that is the fluctuation of FSn (ϕ) around its limit. However, from the random
matrix theory, it is known that for smooth function, typically the fluctuation FSn (ϕ) around
its mean is of order 1/p, i.e. p

{
FSn (ϕ) − E FSn (ϕ)

}
converges to a Gaussian distribution.

From the decomposition,

p
{
FSn (ϕ) − Fy(ϕ)

}
= p

{
FSn (ϕ) − E FSn (ϕ)

}
+ p

{
E FSn (ϕ) − Fy(ϕ)

}
,

we see that the fluctuation around the limit Fy(ϕ) depends on the order of the bias E FSn (ϕ)−
Fy(ϕ). Furthermore, this bias is typically a function of yn − y = p/n − y, the difference
between the dimension-to-sample ratio yn and its limit y. Since yn−y can have an arbitrary
order, e.g. yn − y ∝ p−α for arbitrary α > 0, because of the multiplication of the bias by
p, the last term in the above decomposition can blow up to infinity (for small α), tend to a
constant, or converges to zero (for large α). Therefore, it is not possible to characterise the
fluctuation around the limit Fy(ϕ) without specifying further conditions on the difference
yn − y.

On the other hand, it is difficult to determine accurately the value of E FSn (ϕ). A suc-
cessful solution to this problem is to consider the fluctuation FSn (ϕ) − Fyn (ϕ), that is
around Fyn (ϕ), a finite-horizon proxy for the limit Fy(ϕ) obtained by substituting the cur-
rent dimension-to-sample ratio yn for its limit value y.

In all the following, we use an indicator κ set to 2 when {xi j} are real and to 1 when
they are complex. Define

β = E|xi j|
4 − 1 − κ, h =

√
y. (3.2)

The coefficient β is indeed the fourth-cumulant of the entries {xi j}. In particular, if the
variables are Gaussian, β = 0. Recall that by Eq.(2.16), the Stieltjes transform s of the
companion distribution Fy = (1 − y)δ0 + yFy satisfies the Marčenko-Pastur equation

z = −
1
s

+
y

1 + s
, z ∈ C+. (3.3)
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Theorem 3.4 Assume that the variables {xi j} of the data matrix X = (x1, . . . , xn)
are independent and identically distributed satisfying Exi j = 0, E|xi j|

2 = 1, E|xi j|
4 =

β + 1 + κ < ∞ and in case of complex variables, Ex2
i j = 0. Assume moreover,

p→ ∞, n→ ∞, p/n→ y > 0 .

Let f1, · · · fk be functions analytic on an open region containing the support of Fy. The
random vector {Xn( f1), · · · Xn( fk)} where

Xn( f ) = p
{
FSn ( f ) − Fyn ( f )

}
converges weakly to a Gaussian vector (X f1 , · · · X fk ) with mean function and covariance
function:

E[X f ] = (κ − 1)I1( f ) + βI2( f ) , (3.4)

cov(X f , Xg) = κJ1( f , g) + βJ2( f , g) , (3.5)

where

I1( f ) = −
1

2πi

∮ y
{
s/(1 + s)

}3
(z) f (z)[

1 − y
{
s/(1 + s)

}2
]2 dz ,

I2( f ) = −
1

2πi

∮ y
{
s/(1 + s)

}3
(z) f (z)

1 − y
{
s/(1 + s)

}2 dz ,

J1( f , g) = −
1

4π2

∮ ∮
f (z1)g(z2)

(m(z1) − m(z2))2 m′(z1)m′(z2)dz1dz2 ,

J2( f , g) =
−y
4π2

∮
f (z1)

∂

∂z1

{
s

1 + s
(z1)

}
dz1 ·

∮
g(z2)

∂

∂z2

{
s

1 + s
(z2)

}
dz2 ,

where the integrals are along contours (non overlapping in J1) enclosing the support of
Fy.

A noticeable feature in this CLT is that the asymptotic mean E[X f ] is in general non null
and its value depends on the forth cumulant of the distributions of the entries. While the
LSD, namely the Marčenko-Pastur distribution depends only on the value of the second
moment of the entries, the CLT for linear spectral statistics depends on the first four
moments of the distribution.

Remark 3.5 In Theorem 3.4 and for complex-valued functions { f j}, (X f1 , . . . , X fk ) is
said to follow a Gaussian distribution in the sense that its real and imaginary parts have a
joint (2k)-dimensional real Gaussian distribution. This differs from the standard definition
of a complex-valued Gaussian vector. Moreover, the covariance function is defined in this
theorem to be

cov(X f , Xg) = E{X f − EX f }{Xg − EXg} .

Furthermore, the variance of X f is computed as cov(X f , X f̄ ) where if f (z) = u(z) + iv(z),
f̄ (z) = u(z) − iv(z). Note that with this definition, f is analytic if and only if f̄ does.

However, concrete applications of Theorem 3.4 are not easy since the limiting param-
eters are given through those integrals on contours that are only vaguely defined. The



3.2 CLT for linear spectral statistics of a sample covariance matrix 33

following Proposition convert all these integrals to integrals along the unit circle. These
formula are much easier to use for concrete applications, see for example Proposition 3.8
below.

Proposition 3.6 The limiting parameters in Theorem 3.4 can be expressed as follows:

I1( f ) = lim
r↓1

I1( f , r) , (3.6)

I2( f ) =
1

2πi

∮
|ξ|=1

f (|1 + hξ|2)
1
ξ3 dξ , (3.7)

J1( f , g) = lim
r↓1

J1( f , g, r) , (3.8)

J2( f , g) = −
1

4π2

∮
|ξ1 |=1

f (|1 + hξ1|
2)

ξ2
1

dξ1

∮
|ξ2 |=1

g(|1 + hξ2|
2)

ξ2
2

dξ2 , (3.9)

with

I1( f , r) =
1

2πi

∮
|ξ|=1

f (|1 + hξ|2)[
ξ

ξ2 − r−2 −
1
ξ

]dξ ,

J1( f , g, r) = −
1

4π2

∮
|ξ1 |=1

∮
|ξ2 |=1

f (|1 + hξ1|
2)g(|1 + hξ2|

2)
(ξ1 − rξ2)2 dξ1dξ2 .

Proof We start with the simplest formula I2( f ) to explain the main argument and indeed,
the other formulas are obtained similarly. The idea is to introduce the change of variable
z = 1 + hrξ + hr−1ξ + h2 with r > 1 but close to 1 and |ξ| = 1 (recall h =

√
y). It can be

readily checked that when ξ runs anticlockwise the unit circle, z will run a contour C that
encloses closely the support interval [a, b] = [(1 ± h)2]. Moreover, by Eq. (3.3), we have
on C

s = −
1

1 + hrξ
, and dz = h(r − r−1ξ−2)dξ .

Applying this variable change to the formula of I2( f ) given in Theorem 3.4, we have

I2( f ) = lim
r↓1

1
2πi

∮
|ξ|=1

f (z)
1
ξ3

rξ2 − r−1

r(r2ξ2 − 1)
dξ

=
1

2πi

∮
|ξ|=1

f (|1 + hξ|2)
1
ξ3 dξ .

This proves the formula (3.7). For (3.6), we have similarly

I1( f ) = lim
r↓1

1
2πi

∮
|ξ|=1

f (z)
1
ξ3

rξ2 − r−1

r(r2ξ2 − 1)
1

1 − r−2ξ−2 dξ

= lim
r↓1

1
2πi

∮
|ξ|=1

f (|1 + hξ|2)
1

ξ(ξ2 − r−2)
= lim

r↓1
I1( f , r) .

Formula (3.9) for J2( f , g) is calculated in a same fashion by observing that we have

∂

∂z

{
s

1 + s
(z)

}
dz =

∂

∂ξ

{
s

1 + s
(ξ)

}
dξ =

∂

∂ξ

{
1
−hrξ

}
dξ =

1
hrξ2 dξ .

Finally for (3.8), we use two non-overlapping contours defined by z j = 1+hr jξ j +hr−1
j ξ j +
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h2, j = 1, 2 where r2 > r1 > 1. By observing that

s′(z j)dz j =

(
∂

∂ξ j
s
)

dξ j =
hr j

(1 + hr jξ j)2 dξ j ,

we find

J1( f , g) = lim
r2 > r1 > 1r2 ↓ 1

−
1

4π2

∮
|ξ1 |=1

∮
|ξ2 |=1

f (z1)g(z2){
s(z1) − s(z2)

}2

·
hr1

(1 + hr1ξ1)2 ·
hr2

(1 + hr2ξ2)2 dξ1dξ2

= lim
r2 > r1 > 1,r2 ↓ 1

−
1

4π2

∮
|ξ1 |=1

∮
|ξ2 |=1

f (z1)g(z2)
{r1ξ1 − r2ξ2}

2 dξ1dξ2

= lim
r↓1
−

1
4π2

∮
|ξ1 |=1

∮
|ξ2 |=1

f (|1 + hξ1|
2)g(|1 + hξ2|

2)
{ξ1 − rξ2}

2 dξ1dξ2 .

The proof is complete. �

Remark 3.7 There is another useful formula for the integral I1( f ) in the limiting mean
EX f :

I1( f ) =
f ((1 −

√
y)2) + f ((1 +

√
y)2)

4
−

1
2π

(1+
√

y)2∫
(1−
√

y)2

f (x)√
4y − (x − 1 − y)2

dx. (3.10)

3.2.1 A detailed application of the CLT

Proposition 3.8 Consider two linear spectral statistics
p∑

i=1

log(λi),
p∑

i=1

λi

where {λi} are the eigenvalues of the sample covariance matrix Sn. Then under the as-
sumptions of Theorem 3.4,( ∑p

i=1 log λi − pFyn (log x)∑p
i=1 λi − pFyn (x)

)
=⇒ N(µ1,V1),

with

µ1 =

(
κ−1

2 log(1 − y) − 1
2βy

0

)
,

V1 =

(
−κ log(1 − y) + βy (β + κ)y

(β + κ)y (β + κ)y

)
, and

Fyn (x) = 1, Fyn (log x) =
yn − 1

yn
log 1 − yn − 1 .

Proof Let for x > 0, f (x) = log x and g(x) = x. Applying Theorem 3.4 to the pair ( f , g)
gives( ∑p

i=1 log λi − pFyn (log x)∑p
i=1 λi − pFyn (x)

)
=⇒ N

( (
EX f

EXg

)
,

(
cov(X f , X f ) cov(X f , Xg)
cov(Xg, X f ) cov(Xg, Xg)

) )
.
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Firstly, the values of centring parameters Fyn (log x) and Fyn (x) are calculated in Exam-
ples 2.11 and 2.12. It remains to evaluate the limiting parameters using Proposition 3.6.
They are found from the following calculations where h is denoted as

√
y:

I1( f , r) =
1
2

log
(
1 − h2/r2

)
, (3.11)

I1(g, r) = 0, (3.12)

I2( f ) = −
1
2

h2, (3.13)

I2(g) = 0, (3.14)

J1( f , g, r) =
h2

r2 , (3.15)

J1( f , f , r) = −
1
r

log(1 − h2/r), (3.16)

J1(g, g, r) =
h2

r2 , (3.17)

J2( f , g) = h2, (3.18)

J2( f , f ) = h2, (3.19)

J2(g, g) = h2. (3.20)

Proof of (3.11): We have

I1( f , r) =
1

2πi

∮
|ξ|=1

f (|1 + hξ|2)
[ ξ

ξ2 − r−2 −
1
ξ

]
dξ

=
1

2πi

∮
|ξ|=1

log(|1 + hξ|2)
[ ξ

ξ2 − r−2 −
1
ξ

]
dξ

=
1

2πi

∮
|ξ|=1

(
1
2

log((1 + hξ)2) +
1
2

log((1 + hξ−1)2)
[ ξ

ξ2 − r−2 −
1
ξ

]
dξ

=
1

2πi

[ ∮
|ξ|=1

log(1 + hξ)
ξ

ξ2 − r−2 dξ −
∮
|ξ|=1

log(1 + hξ)
1
ξ

dξ

+

∮
|ξ|=1

log(1 + hξ−1)
ξ

ξ2 − r−2 dξ −
∮
|ξ|=1

log(1 + hξ−1)
1
ξ

dξ
]
.

For the first integral, note that as r > 1, the poles are ± 1
r and we have by the residue

theorem,

1
2πi

∮
|ξ|=1

log(1 + hξ)
ξ

ξ2 − r−2 dξ

=
log(1 + hξ) · ξ

ξ − r−1

∣∣∣∣∣∣
ξ=−r−1

+
log(1 + hξ) · ξ

ξ + r−1

∣∣∣∣∣∣
ξ=r−1

=
1
2

log(1 −
h2

r2 ) .

For the second integral,

1
2πi

∮
|ξ|=1

log(1 + hξ)
1
ξ

dξ = log(1 + hξ)
∣∣∣
ξ=0 = 0 .

The third integral is

1
2πi

∮
|ξ|=1

log(1 + hξ−1)
ξ

ξ2 − r−2 dξ

= −
1

2πi

∮
|z|=1

log(1 + hz)
z−1

z−2 − r−2 ·
−1
z2 dz

=
1

2πi

∮
|z|=1

log(1 + hz)r2

z(z + r)(z − r)
dz =

log(1 + hz)r2

(z + r)(z − r)

∣∣∣∣∣∣
z=0

= 0 ,

where the first equality results from the change of variable z = 1
ξ
, and the third equality
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holds because r > 1, so the only pole is z = 0. Finally, the fourth integral equals

1
2πi

∮
|ξ|=1

log(1 + hξ−1)
1
ξ

dξ = −
1

2πi

∮
|z|=1

log(1 + hz)
−z
z2 dz

= log(1 + hz)
∣∣∣
z=0 = 0 .

Collecting the four integrals leads to the desired formula for I1( f , r).

Proof of (3.12): We have

I1(g, r) =
1

2πi

∮
|ξ|=1

g(|1 + hξ|2) · [
ξ

ξ2 − r−2 −
1
ξ

]dξ

=
1

2πi

∮
|ξ|=1
|1 + hξ|2 ·

[ ξ

ξ2 − r−2 −
1
ξ

]
dξ

=
1

2πi

∮
|ξ|=1

ξ + h + hξ2 + h2ξ

ξ
·
[ ξ

ξ2 − r−2 −
1
ξ

]
dξ

=
1

2πi

∮
|ξ|=1

ξ + h + hξ2 + h2ξ

ξ2 − r−2 dξ −
1

2πi

∮
|ξ|=1

ξ + h + hξ2 + h2ξ

ξ2 dξ .

These two integrals are calculated as follows:

1
2πi

∮
|ξ|=1

ξ + h + hξ2 + h2ξ

ξ2 − r−2 dξ

=
ξ + h + hξ2 + h2ξ

ξ − r−1

∣∣∣∣
ξ=−r−1

+
ξ + h + hξ2 + h2ξ

ξ + r−1

∣∣∣∣
ξ=r−1

= 1 + h2 ;

and
1

2πi

∮
|ξ|=1

ξ + h + hξ2 + h2ξ

ξ2 dξ =
∂

∂ξ
(ξ + h + hξ2 + h2ξ)

∣∣∣∣
ξ=0

= 1 + h2 .

Therefore, I1(g, r) = 0.

Proof of (3.13):

I2( f ) =
1

2πi

∮
|ξ|=1

log(|1 + hξ|2)
1
ξ3 dξ

=
1

2πi

[ ∮
|ξ|=1

log(1 + hξ)
ξ3 dξ +

∮
|ξ|=1

log(1 + hξ−1)
ξ3 dξ

]
.

We have

1
2πi

∮
|ξ|=1

log(1 + hξ)
ξ3 dξ =

1
2
∂2

∂ξ2 log(1 + hξ)
∣∣∣∣
ξ=0

= −
1
2

h2 ;

1
2πi

∮
|ξ|=1

log(1 + hξ−1)
ξ3 dξ = −

1
2πi

∮
|z|=1

log(1 + hz)
1
z3

·
−1
z2 dz = 0 .

Combining the two leads to I2( f ) = − 1
2 h2.

Proof of (3.14):

I2(g) =
1

2πi

∮
|ξ|=1

(1 + hξ)(1 + hξ)
ξ3 dξ =

1
2πi

∮
|ξ|=1

ξ + hξ2 + h + h2ξ

ξ4 dξ = 0 .
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Proof of (3.15):

J1( f , g, r) =
1

2πi

∮
|ξ2 |=1
|1 + hξ2|

2 ·
1

2πi

∮
|ξ1 |=1

log(|1 + hξ1|
2)

(ξ1 − rξ2)2 dξ1dξ2 .

We have,

1
2πi

∮
|ξ1 |=1

log(|1 + hξ1|
2)

(ξ1 − rξ2)2 dξ1

=
1

2πi

∮
|ξ1 |=1

log(1 + hξ1)
(ξ1 − rξ2)2 dξ1 +

1
2πi

∮
|ξ1 |=1

log(1 + hξ−1
1 )

(ξ1 − rξ2)2 dξ1 .

The first term

1
2πi

∮
|ξ1 |=1

log(1 + hξ1)
(ξ1 − rξ2)2 dξ1 = 0,

because for fixed |ξ2| = 1, |rξ2| = |r| > 1, so rξ2 is not a pole. The second term is

1
2πi

∮
|ξ1 |=1

log(1 + hξ−1
1 )

(ξ1 − rξ2)2 dξ1 = −
1

2πi

∮
|z|=1

log(1 + hz)
( 1

z − rξ2)2
·
−1
z2 dz

=
1

2πi
·

1
(rξ2)2

∮
|z|=1

log(1 + hz)
(z − 1

rξ2
)2

dz =
1

(rξ2)2 ·
∂

∂z
log(1 + hz)

∣∣∣∣
z= 1

rξ2

=
h

rξ2(rξ2 + h)
,

where the first equality results from the change of variable z = 1
ξ1

, and the third equality
holds because for fixed |ξ2| = 1, | 1

rξ2
| = 1

|r| < 1, so 1
rξ2

is a pole of second order.
Therefore,

J1( f , g, r)

=
h

2πir2

∮
|ξ2 |=1

(1 + hξ2)(1 + hξ2)
ξ2(ξ2 + h

r )
dξ2

=
h

2πir2

∮
|ξ2 |=1

ξ2 + hξ2
2 + h + h2ξ2

ξ2
2(ξ2 + h

r )
dξ2

=
h

2πir2

[ ∮
|ξ2 |=1

1 + h2

ξ2(ξ2 + h
r )

dξ2 +

∮
|ξ2 |=1

h
ξ2 + h

r

dξ2 +

∮
|ξ2 |=1

h
ξ2

2(ξ2 + h
r )

dξ2

]
.

Finally we find J1( f , g, r) = h2

r2 since

h
2πir2

∮
|ξ2 |=1

1 + h2

ξ2(ξ2 + h
r )

dξ2 = 0 ,
h

2πir2

∮
|ξ2 |=1

h
ξ2 + h

r

dξ2 =
h2

r2 ,

h
2πir2

∮
|ξ2 |=1

h
ξ2

2(ξ2 + h
r )

dξ2 = 0 .

Proof of (3.16):

J1( f , f , r) =
1

2πi

∮
|ξ2 |=1

f (|1 + hξ2|
2) ·

1
2πi

∮
|ξ1 |=1

f (|1 + hξ1|
2)

(ξ1 − rξ2)2 dξ1dξ2
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=
1

2πi

∮
|ξ2 |=1

f (|1 + hξ2|
2)

h
rξ2(rξ2 + h)

dξ2

=
h

2πir2

∮
|ξ2 |=1

log(1 + hξ2)
ξ2( h

r + ξ2)
dξ2 +

h
2πir2

∮
|ξ2 |=1

log(1 + hξ−1
2 )

ξ2( h
r + ξ2)

dξ2 .

We have

h
2πir2

∮
|ξ2 |=1

log(1 + hξ2)
ξ2( h

r + ξ2)
dξ2

=
h
r2

[
log(1 + hξ2)

h
r + ξ2

∣∣∣∣∣∣
ξ2=0

+
log(1 + hξ2)

ξ2

∣∣∣∣∣∣
ξ2=− h

r

]
= −

1
r

log(1 −
h2

r
) ,

and

h
2πir2

∮
|ξ2 |=1

log(1 + hξ−1
2 )

ξ2( h
r + ξ2)

dξ2 =
−h

2πir2

∮
|z|=1

log(1 + hz)
1
z ( h

r + 1
z )
·
−1
z2 dz

=
1

2πir

∮
|z|=1

log(1 + hz)
z + r

h
dz = 0 ,

where the first equality results from the change of variable z = 1
ξ2

, and the third equality
holds because | rh | > 1, so r

h is not a pole.
Finally, we find J1( f , f , r) = − 1

r log(1 − h2

r ) .

Proof of (3.17):

J1(g, g, r) =
1

2πi

∮
|ξ2 |=1
|1 + hξ2|

2 ·
1

2πi

∮
|ξ1 |=1

|1 + hξ1|
2

(ξ1 − rξ2)2 dξ1dξ2 .

We have

1
2πi

∮
|ξ1 |=1

|1 + hξ1|
2

(ξ1 − rξ2)2 dξ1 =
1

2πi

∮
|ξ1 |=1

ξ1 + hξ2
1 + h + h2ξ1

ξ1(ξ1 − rξ2)2 dξ1

=
1

2πi

[ ∮
|ξ1 |=1

1 + h2

(ξ1 − rξ2)2 dξ1 +

∮
|ξ1 |=1

hξ1

(ξ1 − rξ2)2 dξ1

+

∮
|ξ1 |=1

h
ξ1(ξ1 − rξ2)2 dξ1

]
=

h
r2ξ2

2

,

since

1
2πi

∮
|ξ1 |=1

1 + h2

(ξ1 − rξ2)2 dξ1 = 0 ,
1

2πi

∮
|ξ1 |=1

hξ1

(ξ1 − rξ2)2 dξ1 = 0 ,

1
2πi

∮
|ξ1 |=1

h
ξ1(ξ1 − rξ2)2 dξ1 =

h
(ξ1 − rξ2)2

∣∣∣∣∣∣
ξ1=0

=
h

r2ξ2
2

.

The last equality holds because for fixed |ξ2| = 1, |rξ2| = |r| > 1, so rξ2 is not a pole.
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Therefore,

J1(g, g, r) =
h

2πir2

∮
|ξ2 |=1

ξ2 + hξ2
2 + h + h2ξ2

ξ3
2

dξ2

=
h

2πir2

[ ∮
|ξ2 |=1

1 + h2

ξ2
2

dξ2 +

∮
|ξ2 |=1

h
ξ2

dξ2 +

∮
|ξ2 |=1

h
ξ3

2

dξ2

]
,

=
h2

r2 .

Proof of (3.18) (3.19) (3.20): We have

1
2πi

∮
|ξ1 |=1

f (|1 + hξ1|
2)

ξ2
1

dξ1 =
1

2πi

∮
|ξ1 |=1

log(|1 + hξ1|
2)

ξ2
1

dξ1

=
1

2πi

∮
|ξ1 |=1

log(1 + hξ1) + log(1 + hξ−1
1 )

ξ2
1

dξ1 = h ,

since

1
2πi

∮
|ξ1 |=1

log(1 + hξ1)
ξ2

1

dξ1 =
∂

∂ξ1

(
log(1 + hξ1)

)∣∣∣∣∣∣
ξ1=0

= h ,

1
2πi

∮
|ξ1 |=1

log(1 + hξ−1
1 )

ξ2
1

dξ1 = −
1

2πi

∮
|z|=1

log(1 + hz)
1
z2

· (−
1
z2 dz)

=
1

2πi

∮
|z|=1

log(1 + hz)dz = 0 .

Similarly,

1
2πi

∮
|ξ2 |=1

g(|1 + hξ2|
2)

ξ2
2

dξ2 =
1

2πi

∮
|ξ2 |=1

ξ2 + hξ2
2 + h + h2ξ2

ξ3
2

dξ2 = h.

Therefore,

J2( f , g) =
1

2πi

∮
|ξ1 |=1

f (|1 + hξ1|
2)

ξ2
1

dξ1 ·
1

2πi

∮
|ξ2 |=1

g(|1 + hξ2|
2)

ξ2
2

dξ2 = h2 ,

J2( f , f ) =
1

2πi

∮
|ξ1 |=1

f (|1 + hξ1|
2)

ξ2
1

dξ1 ·
1

2πi

∮
|ξ2 |=1

f (|1 + hξ2|
2)

ξ2
2

dξ2 = h2 ,

J2(g, g) =
1

2πi

∮
|ξ1 |=1

g(|1 + hξ1|
2)

ξ2
1

dξ1 ·
1

2πi

∮
|ξ2 |=1

g(|1 + hξ2|
2)

ξ2
2

dξ2 = h2 .

�

3.3 Bai and Silverstein’s CLT

The CLT in Theorem 3.4 assumes the simplest LSD, namely the Marčenko-Pastur law Fy,
so that the population covariance matrix Σ is asymptotically close to the identity matrix.
The following CLT allows a general population covariance as in Theorem 2.14 that leads
to generalised Marčenko-Pastur distributions. Therefore, consider the sample covariance
matrix B̃n = Σ

1
2 SnΣ

1
2 defined in (2.14), or equivalently the random matrix Bn = SnTn
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defined in Theorem 2.14. Under the conditions of this theorem, the ESD of Bn converges
to the generalised Marčenko-Pastur distribution Fy,H .

Theorem 3.9 Let {xi j} be the variables in the data matrix X = {x1, . . . , xn}. Assume that
the following conditions hold:

(a) the variables {xi j} are i.i.d., Exi j = 0, E|xi j|
2 = 1, E|xi j|

4 < ∞.
(b) p ∧ n→ ∞ and yn := p/n→ y > 0.
(c) Tn is p× p nonrandom Hermitian nonnegative definite with spectral norm bounded in

p, and its ESD Hn = FTn converges weakly to a non-random probability distribution
H.

Let f1, · · · , fk be functions analytic on an open region containing the interval[
lim inf

n
λTn

minI(0,1)(y)(1 −
√

y)2, lim sup
n

λTn
max(1 +

√
y)2

]
. (3.21)

Then the random vector (Xn( f1), · · · , Xn( fk)) where

Xn( f ) = p
{
FBn ( f ) − Fyn,Hn

}
converges weakly to a Gausssian vector (X f1 , . . . , X fk ) whose mean and covariance func-
tions are determined as follows.

(i) If the xi j’s and Tn are real and E(x4
i j) = 3, the mean function is

EX f = −
1

2πi

∮
C

f (z)
y
∫ s(z)3t2dH(t)

(1+ts(z))3(
1 − y

∫ s(z)2t2dH(t)
(1+ts(z))2

)2 dz, (3.22)

and the covariance function is

cov(X f , Xg) = −
1

2π2

∮
C1

∮
C2

f (z1)g(z2)
(s(z1) − s(z2))2 s′(z1)s′(z2)dz1dz2, (3.23)

where the integrals are along contours (non-overlapping for the covariance function)
which are closed and positively oriented and enclosing the support of Fy,H .

(ii) If the xi j’s are complex with E(x2
i j) = 0 and E(|xi j|

4) = 2, the means function is iden-
tically zero and the covariance function is 1/2 times the function given above for the
real case.

Compared to the previous CLT in Theorem 3.4, as explained earlier, the new CLT has
the advantage that a general population covariance matrix S is allowed. However, this
CLT has a limitation: the entries {xi j} are assumed to have a Gaussian-like 4-th moment
while in Theorem 3.4, this moment can be arbitrary.

3.4 CLT for linear spectral statistics of random Fisher matrices

Consider the random Fisher matrix Fn defined in (2.24) and satisfying the conditions of
Theorem 2.28. Denote its ESD by Fn := FFn where n = (n1, n2) are the sizes of the two
sample (x1, . . . , xn1 ) and (y1, . . . , yn2 ). The two dimension-to-sample ratios are denoted as
yn1 = p/n1 and yn2 = p/n2 and they converge to (y1, y2) ∈ (0,∞)×(0, 1). By Theorem 2.28,
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almost surely Fn converges weakly to the Fisher LSD Fy1,y2 defined in Eqs.(2.25)-(2.26).
Consequently, for all continuous function ϕ, almost surely the linear spectral statistic
Fn(ϕ) converges to Fy1,y2 (ϕ).

For the same reasons as in §3.2 for the sample covariance matrix, the fluctuation of
the linear spectral statistic Fn(ϕ) cannot be studied around the limit Fy1,y2 (ϕ), but around
some finite-horizon proxy of the limit, namely the value Fyn1 ,yn2

(ϕ) obtained from the limit
by substituting the current dimension-to-sample ratios (yn1 , yn2 ) for their limits (y1, y2) in
the Fisher LSD.

Let s(z) be the Stieltjes transform of the Fisher LSD Fy1,y2 and define a companion
Stieltjes transform s(z) = −

1−y1
z + y1s(z). Let sy2 (z) be the Stieltjes transform of the

Marčenko-Pastur law Fy2 (LSD of the covariance matrix S2) and sy2
(z) = −

1−y2
z + y2sy2 (z)

be its companion Stieltjes transform. Finally, define

m0(z) = sy2
(−s(z)). (3.24)

Again the complex-valued and real-valued cases are distinguished using the indicator
variable κ: κ = 1 when all the variables are complex-valued, and κ = 2 when they are all
real-valued.

Theorem 3.10 Assume that

(i) the two samples X = (x1, . . . , xn1 ) = (xi j) and Y = (y1, . . . , yn2 ) = (yik) are as in
Theorem 2.28 made with i.i.d. entries, respectively;

(ii) E xi j = 0, E |xi j|
2 = 1, E|x jk |

4 = βx + 1 + κ + o(1) < ∞ and E yik = 0, E |yik |
2 = 1,

E|y jk |
4 = βy +1+κ+o(1) < ∞. And in case there are complex-valued, E x2

i j = E y2
ik = 0.

(iii) the dimension p and the sample sizes (n1, n2) tend to infinity such that

yn1 := p/n1 → y1 ∈ (0,+∞), yn2 := p/n2 → y2 ∈ (0, 1) , (3.25)

Let f1, · · · , fk be k analytic functions on an open domain of the complex plane enclosing
the interval [a, b], which is the support of the continuous component of the Fisher LSD
Fy1,y2 . Then, as n→ ∞, the random vector (Xn( f1), . . . , Xn( fk)) where

Xn( f ) := p
{
Fn( f ) − Fyn1 ,yn2

( f )
}
,

converges weakly to a Gaussian vector (X f1 , · · · , X fk ) with mean function

EX fi =
κ − 1
4πi

∮
fi(z) d log

 (1 − y2)m2
0(z) + 2m0(z) + 1 − y1

(1 − y2)m2
0(z) + 2m0(z) + 1


+
κ − 1
4πi

∮
fi(z) d log

(
1 − y2m2

0(z)(1 + m0(z))−2
)

+
βx · y1

2πi

∮
fi(z) (m0(z) + 1)−3 dm0(z)

+
βy

4πi

∮
fi(z)

(
1 − y2m2

0(z)(1 + m0(z))−2
)

d log
(
1 − y2m2

0(z)(1 + m0(z))−2
)
, (3.26)

and covariance functions

cov(X fi , X f j ) = −
κ

4π2

∮ ∮
fi(z1) f j(z2))dm0(z1)dm0(z2)

(m0(z1) − m0(z2))2

−
(βxy1 + βyy2)

4π2

∮ ∮
fi(z1) f j(z2)dm0(z1)dm0(z2)
(m0(z1) + 1)2(m0(z2) + 1)2 . (3.27)



42 CLT for linear spectral statistics

Again, it is worth noticing that the limiting parameters depend on the fourth cumulants
of the variables contrary to the Fisher LSD that depends only on their second moments.
Next, similarly as in Proposition3.6, it is possible to calculate the limiting mean and co-
variance functions using contour integrals on the unit circle.

Proposition 3.11 The limiting mean and covariance functions in Theorem 3.10 can be
determined as

EX fi = lim
r↓1

κ − 1
4πi

∮
|ξ|=1

fi

(
1 + h2 + 2h<(ξ)

(1 − y2)2

) [
1

ξ − r−1 +
1

ξ + r−1 −
2

ξ +
y2
h

]
dξ

+
βx · y1(1 − y2)2

2πi · h2

∮
|ξ|=1

fi

(
1 + h2 + 2h<(ξ)

(1 − y2)2

)
1

(ξ +
y2
h )3

dξ ,

+
βy · (1 − y2)

4πi

∮
|ξ|=1

fi

(
1 + h2 + 2h<(ξ)

(1 − y2)2

)
ξ2 −

y2
h2

(ξ +
y2
h )2

 1

ξ −
√

y2

h

+
1

ξ +
√

y2

h

−
2

ξ +
y2
h

 dξ,

(3.28)

and

cov(X fi , X f j ) = −lim
r↓1

κ

4π2

∮
|ξ1 |=1

∮
|ξ2 |=1

fi
(

1+h2+2h<(ξ1)
(1−y2)2

)
f j

(
1+h2+2h<(ξ2)

(1−y2)2

)
(ξ1 − rξ2)2 dξ1dξ2

−
(βxy1 + βyy2)(1 − y2)2

4π2h2

∮
|ξ1 |=1

fi
(

1+h2+2h<(ξ1)
(1−y2)2

)
(ξ1 +

y2
h )2

dξ1

∮
|ξ2 |=1

f j

(
1+h2+2h<(ξ2)

(1−y2)2

)
(ξ2 +

y2
h )2

dξ2.

(3.29)

The examples below describe applications of Theorem 3.10 to some important linear
spectral statistics of the Fisher matrix Fn. The results are derived using Proposition 3.11
and contour integral along the same lines as in the calculations given in the proof of
Proposition 3.8. The details are left to the reader.

Example 3.12 For f1 = log(a + bx), f2 = log(a′ + b′x), a, a′ ≥ 0, b, b′ > 0, we have
for the real case (κ = 2),

EX f1 =
1
2

log
(

(c2 − d2)h2

(ch − y2d)2

)
−
βxy1(1 − y2)2d2

2 (ch − dy2)2 +
βy(1 − y2)

2

 2dy2

ch − dy2
+

d2
(
y2

2 − y2

)
(ch − dy2)2


and

cov(X f1 , X f2 ) = 2 log
(

cc′

cc′ − dd′

)
+

(βxy1 + βyy2)(1 − y2)2dd′

(ch − dy2)(c′h − d′y2)

where c > d > 0, c′ > d′ > 0 satisfying c2 + d2 =
a(1−y2)2+b(1+h2)

(1−y2)2 , (c′)2 + (d′)2 =

a′(1−y2)2+b′(1+h2)
(1−y2)2 , cd = bh

(1−y2)2 and c′d′ = b′h
(1−y2)2 .

Example 3.13 For gk(x) = xk and gl(x) = xl with positive integers k ≥ l ≥ 1, we have
in the real case (κ = 2),

EXgk =
1

2(1 − y2)2k

[
(1 − h)2k + (1 + h)2k − 2(1 − y2)k

(
1 −

h2

y2

)k
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+
∑

i1+i2+i3=k−1

k · k!i3!
(
(−1)i3 + (−1)2i3+1

)
(k − i1)!(k − i2)!

hk+i1−i2 +
∑

i1+i2+i3=k−1

2k · k!i3! · hk+i1−i2

(k − i1)!(k − i2)!

(
−

h
y2

)i3+1
]

+
βx · y1

h2(1 − y2)2(k−1)

[ ∑
i1+i2+i3=2

k · k!(k + i3 − 1)!(−1)i3

2(k − i1)!(k − i2)!
hi1 (1 − y2)k−i1

(
h2 − y2

h

)k−i2 (
−

h
y2

)k+i3

+
∑

i1+i2+i3=k−1

k · k!(2 + i3)!(−1)i3

(k − i1)!(k − i2)!2!
· hk+i1−i2

(
h
y2

)3+i3 ]

+
βy

2(1 − y2)2k−1

[ ∑
i1+i2

+i3+i4=1

k · k!(k + i4 − 1)!(−1)i4

(k − i1)!(k − i2)!
hi1 (1 − y2)k−i1

(
h2 − y2

h

)k−i2 ( √
y2 − y2

h

)1−i3 (
−

h
y2

)k+i4

+
∑

i1+i2+i3+i4=1

k · k!(k + i4 − 1)!(−1)i4

(k − i1)!(k − i2)!
hi1 (1 − y2)k−i1

(
h2 − y2

h

)k−i2 (
−
√

y2 − y2

h

)1−i3 (
−

h
y2

)k+i4

+
∑

i1+i2+i3+i4=k−1

k · k!(i4 + 1)!(−1)i4

(k − i1)!(k − i2)!
· hk+i1−i2

( √y2

h

)1−i3

+

(
−

√
y2

h

)1−i3
 ( h

y2

)2+i4

−
∑

i1+i2+i3
+i4+i5=2

k · k!(k + i5 − 1)!hi1 (1 − y2)k−i1

(k − i1)!(k − i2)!(−1)i5

(
h2 − y2

h

)k−i2 ( √
y2 − y2

h

)1−i3 (
−
√

y2 − y2

h

)1−i4 (
−

h
y2

)k+i5

−
∑

i1+i2+i3+i4+i5=k−1

k · k!(i5 + 2)!(−1)i5

(k − i1)!(k − i2)!
· hk+i1−i2

( √
y2

h

)1−i3 (
−

√
y2

h

)1−i4 (
h
y2

)3+i5 ]

and

cov(Xgk , Xgl )

=
2

(1 − y2)2l+2k

∑
i1+i2+i3

=l−1

∑
j1+ j2

=k+i3+1

l · l!(i3 + 1)!k!k!
(l − i1)!(l − i2)!(k + i3 + 1)!(k − j1)!(k − j2)!

hl+k+i1−i2+ j1− j2

+
(βxy1 + βyy2)(1 − y2)2

h2

{[ ∑
i1+i2+i3=1

l · l!(l + i3 − 1)!(−1)i3

(l − i1)!(l − i2)!
hi1 (1 − y2)l−i1

(
h2 − y2

h

)l−i2 (
−

h
y2

)l+i3

+
∑

i1+i2+i3=l−1

l · l!(1 + i3)!(−1)i3

(l − i1)!(l − i2)!
hl+i1−i2

(
h
y2

)2+i3 ]

×

[ ∑
i1+i2+i3=1

k · k!(k + i3 − 1)!(−1)i3

(k − i1)!(k − i2)!
hi1 (1 − y2)k−i1

(
h2 − y2

h

)k−i2 (
−

h
y2

)k+i3

+
∑

i1+i2+i3=k−1

k · k!(1 + i3)!(−1)i3

(k − i1)!(k − i2)!
hk+i1−i2

(
h
y2

)2+i3 ]}

Example 3.14 If g = ex, then by Taylor expansion, we have

EXg =

+∞∑
l=0

1
l!
EXgl and cov(X f , X f ) =

+∞∑
k,l=0

cov(Xgk , Xgl )

where gl(x) = xl, EXgl and cov(Xgl , Xgk )are given in Example 3.13.
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3.5 The substitution principle

So far we have studied the non-centred sample covariance (2.7)

Sn0 =
1
n

n∑
i=1

xi0xi0
∗ , (3.30)

from a sample x10, . . . , xn0 of a p-dimensional population. The 0 in the subscript here is
used to remind the fact that so far it has been assumed that the population is centred, i.e.
E xi0 = 0. However, in real-life statistical applications, populations have in general a non
null mean µ. If the sample is denoted as x1, . . . , xn, the centred sample covariance matrix
in (2.1)

Sn =
1

n − 1

n∑
i=1

(xi − x)(xi − x)∗ , (3.31)

is preferred (x = 1
n
∑

j x j is the sample mean). Recall that the population covariance matrix
is Σ = Ip in both situations.

Is there then any difference between these centred and non-centred sample covariance
matrices regarding their eigenvalue statistics? Consider first the limiting spectral distribu-
tions. Let λ10 ≥ · · · ≥ λp0 and λ1 ≥ · · · ≥ λp be the ordered eigenvalues of S0

n and Sn,
respectively. Write

Sn =
1

n − 1

n∑
i=1

(xi − µ)(xi − µ)∗ −
n

n − 1
(µ − x)(µ − x)∗ .

The first sum is distributed as n
n−1 Sn0 while the second term is a random matrix of rank one

(notice however the division by n − 1 in the first term). By Cauchy interlacing theorem,
we have

n
n − 1

λ10 ≥ λ1 ≥
n

n − 1
λ20 ≥ λ2 ≥ · · · ≥

n
n − 1

λp0 ≥ λp .

It follows that the ESD’s FSn0 and FSn of the two matrices converge to a same LSD,
namely the Marčenko-Pastur distribution Fy with index y = lim p/n.

Next consider the fluctuations of a linear spectral statistics from the two matrices. Let
g be a smooth function. By Theorem 3.4

p[FSn0 (g) − Fyn (g)] = g(λ10) + · · · + g(λp0) − pFyn (g)
D
−→ N(m(g), v(g)) , (3.32)

a Gaussian distribution whose parameters m(g) and v(g) depend only on the M-P law Fy

and g. Is this also true for the sample covariance matrix Sn, namely

p[FSn (g) − Fyn (g)] = g(λ1) + · · · + g(λp) − pFyn (g)
D
−→ N(m(g), v(g)) , (3.33)

with the same limiting parameters (m(g), v(g))?
The crucial issue here is that the centring term pFyn (g) uses a finite-horizon proxy of

the LSD Fy obtained by substituting the current dimension-to-sample ratio yn = p/n for
its limit y. Since p is of the order of n, any mis-estimation of order n−1 in Fyn (g) will affect
the asymptotic mean m(g).

It turns out that linear spectral statistics of Sn and S0
n do not share a same CLT, that is

the convergence in (3.33) is not true as such. This can be best explained by observing the
Gaussian case. Define N = n−1 to be the adjusted sample size. For a Gaussian population,
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NSn :=
∑n

i=1(xi − x)(xi − x)∗ has a Wishart distribution WN with N degrees of freedom.
Since from a centred Gaussian population, the matrix NS0

N =
∑N

i=1 xi0xi0
∗ has the same

Wishart distribution, we conclude that the fluctuations of the eigenvalues (λ j) of Sn are
the same as the matrix S0

N so that by (3.32), it holds

p
{
FSn (g) − pFyN (g)

} D
−→ N(m(g), v(g)) . (3.34)

In words, in the Gaussian case, the CLT for the centred sample covariance matrix is the
same as the CLT for the non-centred sample covariance matrix provided that in the cen-
tring parameter one substitutes the adjusted sample size N = n − 1 for the sample size n.
This result will be referred as the substitution principle. Notice that typically the differ-
ence between FyN (g) and Fyn (g) is of order n−1 and as explained above, such a difference
is non negligible because of the multiplication by p in the CLT.

Example 3.15 For y < 1 and g(x) = log x, Example 2.11 shows that Fy(g) = −1 + (y −
1) log(1 − y)/y. Therefore

Fyn (g) − FyN (g) = −
1
n

{
1 +

1
yn

log(1 − yn)
}

+ o(n−1) ,

so that

p
{
Fyn (g) − FyN (g)

}
→ −

{
y + log(1 − y)

}
> 0, as n→ ∞.

So using N or n in the centring parameter of the CLT leads to a different asymptotic mean
m(g).

This substitution principle is indeed a remarkable result and provides an elegant solu-
tion to the question raised in (3.33). It then raises the question whether the principle is
universal, i.e. valid for general populations other than Gaussian. The following theorem
establishes this universality.

Theorem 3.16 (One sample substitution principle) Assume the same conditions as
in Theorem 3.4 except that the zero mean condition E xi j = 0 is dropped and the sample
covariance matrix Sn is defined as in 3.31. Then, with N = n − 1 and yN = p/N, the
random vector {Xn( f1), · · · Xn( fk)} where

Xn( f ) = p
{
FSn ( f ) − FyN ( f )

}
converges weakly to the same Gaussian vector (X f1 , · · · X fk ) given in Theorem 3.4.

Next consider the two-sample Fisher matrix Fn0 = S10S−1
20 in (2.24). Again the subscript

0 is added to remind the fact that both populations have zero mean. When these means
are non null, it is more natural to consider centred sample covariance matrices and the
associated Fisher matrix Fn defined by

S1 =
1

N1

n1∑
k=1

(xk − x)(xk − x)∗, S2 =
1

N2

n2∑
k=1

(yk − y)(yk − y)∗, Fn = S1S2
−1, (3.35)

where Ni = ni − 1, i = 1, 2 are the adjusted sample sizes, and x and y the sample means
from the two samples. Above discussions on the sample covariance matrix reveal that
in this case, the CLT for linear spectral statistics of a Fisher random matrix could be
different of the CLT given in Theorem 3.10 for zero-mean populations. Again, considering
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Gaussian populations indicates that there might be a substitution principle. Such universal
principle indeed exists.

Theorem 3.17 (Two-sample substitution principle) Assume the same conditions as
in Theorem 3.10 except that the zero mean conditions E xi j = 0 and E yi j = 0 are
dropped, and the sample covariance matrix and the associated Fisher matrix Fn are de-
fined as in (3.35). Then, with Ni = ni − 1 and yNi = p/Ni, i = 1, 2, the random vector
{Xn( f1), · · · Xn( fk)} where

Xn( f ) = p
{
FFn ( f ) − FyN1 ,yN2

( f )
}

converges weakly to the same Gaussian vector (X f1 , · · · X fk ) given in Theorem 3.10.

To summarise, for any statistical application developed later in this book that uses a
CLT for some linear spectral statistic of a sample covariance matrix or of a Fisher matrix,
it is sufficient to indicate the results for zero-mean populations with the covariance matrix
sn0 or Fn0. The corresponding results for populations with unknown means are easily
derived using the substitution principles of this section.

Notes

Central limit theorems for eigenvalues of sample covariance matrices have a long history.
The earliest work dates back to Jonsson (1982) for Gaussian samples. The breakthrough
work on the topic is due to Bai and Silverstein (2004) for general samples by provid-
ing explicit expressions for the limiting mean and variance functions. This is the CLT
presented in §3.3 However, this CLT requires that the first four moments of the sample
variables match those of the Gaussian case.

Recent efforts have been made in Pan and Zhou (2008) and Lytova and Pastur (2009)
to overcome these moment restrictions. Theorem 3.4 is an adaptation of the CLT in Pan
and Zhou (2008) to the present case. The representation of the limiting parameters using
contour integrals on the unit circle is due to Wang and Yao (2013).

The CLT for linear spectral statistics of random Fisher matrix is due to Zheng (2012).
In both Theorems 3.4 and 3.10, the random variables are assumed to be independent

and identically distributed. The assumption of identical distribution can be removed by
imposing a Lindeberg condition on the moments of the independent variables, see e.g.
Bai and Silverstein (2010) for an approach along this line.

The substitution principles in Theorems 3.16 and 3.17 are due to Zheng et al. (2015).
An earlier and closely related result for the sample covariance appeared in Pan (2014). In
this reference, the sample covariance matrix is normalised by 1/n and the proposed solu-
tion is to find a direct correction to the asymptotic mean. Such correction is unnecessary
in the substitution principle with the normalisation 1/N.



4

The generalised variance and multiple
correlation coefficient

4.1 Introduction

For linear spectral statistics of a large sample covariance matrix or of a Fisher matrix,
their limiting values and limiting distributions are derived and discussed in Chapter 2 and
Chapter 3, respectively. This chapter is devoted to applications of this general theory to
two traditional multivariate statistics, namely the generalised variance and the multiple
correlation coefficient. Despite their relative simplicity, the two applications nicely illus-
trate the whole methodology developed in the book. The main message is that with the
help of the new theory, it is possible to find an asymptotic framework capable to deal
with large-dimensional data. In particular, new limiting distributions derived within this
framework for traditional multivariate statistics provide accurate finite-sample approxi-
mations in case of large-dimensional data. More sophisticated applications and examples
are developed in later chapters of the book.

4.2 The generalised variance

The variance σ2 of a univariate distribution has two multivariate analogues, namely the
covariance matrix Σ and the scalar |Σ|. The later is called the generalised variance of
the multivariate distribution. Similarly, the generalised variance of the sample of vectors
x1, . . . , xn is

|S| =

∣∣∣∣∣∣∣ 1
N

n∑
k=1

(xk − x̄)(xk − x̄)′
∣∣∣∣∣∣∣ , (4.1)

where N := n − 1 is the degree of freedom. In some sense each of these is a measure of
spread. The generalised variance is important for multivariate analysis since it occurs in
many likelihood ratio criteria for testing hypotheses.

Before going further, we introduce a very important class of distributions, namely the
Wishart distributions.

Definition 4.1 Let xk, k = 1, . . . , n be i.i.d. from a p-th dimensional normal distribution
Np(µk,Σ). Then the distribution of the p × p random matrix

W =

n∑
k=1

xkx′k (4.2)

47
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is called a Wishart distribution with degrees of freedom n and non-central matric param-
eter Ψ =

∑n
k=1 Σ

−1/2µkµ
′
kΣ
−1/2. The distribution is denoted by W(Σ, n,Ψ)

Moreover, whenΨ = 0, the distribution is a centred Wishart distribution and denoted by
W(Σ, n). In particular, W(Ip, n) denotes the standard Wishart distribution with n degrees
of freedom.

Fundamental properties such as the density function, moments and the characteristic
function are well known; we refer the reader to Anderson (2003, Chapter 7) for a complete
account.

4.2.1 Exact distribution with a normal sample

Consider a sample xk, k = 1, . . . , n from a pth dimensional normal distribution N(µk,Σ).
The generalised variance |S| in (4.1) has the same distribution as |A/N|, where A =∑N

k=1 ξkξ
′
k, and the ξks are i.i.d. random vectors distributed as N(0,Σ). (Recall N = n− 1).

Write ξk = Buk, k = 1, . . . ,N, where B is invertible and BB′ = Σ. It follows that
u1, . . . ,uN are i.i.d. distributed as N(0, I).

Let

M =

N∑
k=1

uku′k =

N∑
k=1

B−1ξkξ
′
k(B−1)′ = B−1AB−1 ;

then |A| = |B| · |M| · |B′| = |M| · |Σ|. Note that M is distributed as the p-dimensional stan-
dard Wishart distribution W(Ip,N) with N degrees of freedom. It is well-known that its
determinant |M| is distributed as a product of independent chi-squared random variables.

Theorem 4.2 The generalised variance |S| of a sample x1, . . . , xn, where the {xi} are
normally distributed with mean µ and variance Σ, has the same distribution as N−p|Σ|

multiplied by the product of p independent factors, say uk, i = k, . . . , p, the factor uk

having the chi-squared distribution with N − k + 1 degrees of freedom.

For a proof of this classical result, we refer the reader to Anderson (2003, §7.2). For
example when p = 1, |S| has the distribution of |Σ| · χ2

N/N. If p = 2, |S| has the distri-
bution of |Σ|χ2

N · χ
2
N−1/N

2. The general result from the theorem can be expressed by the
distributional identity

|S| D= N−p|Σ| · χ2
N · χ

2
N−1 · · · χ

2
N−p+1,

where the χ2s are independent.

4.2.2 Large sample distribution from a normal population

Rewrite the distributional identity in Theorem 4.2 as

|S|
|Σ|

D
=

p∏
k=1

χ2
N−k+1

N
.

To find large sample limiting distribution, let p be fixed and N → ∞. For each 1 ≤ k ≤ p,

[χ2
N−k+1 − (N − k + 1)]/

√
N − k + 1

D
−→ N(0, 2); or equivalently

√
N(χ2

N−k+1/N − 1)
D
−→
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N(0, 2). Since these chi-squares are independent, the vector

y =
1
N


χ2

N
...

χ2
N−p+1

 ,
is asymptotic normal:

√
N(y − 1p)

D
−→ N(0, 2Ip) Consider the function f : Rp → R;

u = (u1, . . . , up) 7→ u1u2 · · · up. Then |S|/|Σ| = f (y), f (1p) = 1, and ∇ f (1p) = 1′p.
Applying the delta method,

√
N

(
|S|
|Σ|
− 1

)
converges in distribution to N(0, 2p) when N → ∞.

Theorem 4.3 For the sample covariance matrix S from a p-dimensional normal popu-
lation N(µ,Σ),

√
n(|S|/|Σ| − 1) converges in distribution to N(0, 2p) when N → ∞ (while

the dimension p is hold fixed).

4.2.3 The generalised variance from a large-dimensional sample

Clearly, when the dimension p is larger than the sample size n, the sample covariance
matrix S is singular. The sample generalised variance is null and cannot be a reliable
estimate of the population generalised variance. What happens for dimension p smaller
than n? And does the sample generalised variance approach its population counterpart for
large sample sizes?

We start with a normal population x ∼ N(µ, Ip) and assume that p/n → y ∈ (0, 1).
Define for u ∈ (0, 1),

d(u) = 1 +
1 − u

u
log(1 − u) =

∞∑
k=1

1
k(k + 1)

uk, (4.3)

which is a positive function. For a standard normal population, the generalised variance
is unit. For the sample generalised variance, consider

1
p

log |S| =
∫ ∞

0
log xdFS(x).

By the Marčenko-Pastur law, almost surely, FS D
−→ Fy(x), where Fy is the Marčenko-

Pastur distribution with index y and scale parameter σ2 = 1, see §2.3, Eq.(2.5). Further-
more, by Theorem 6.1, almost surely, λ1 → b = (1 +

√
y)2 and λp → a = (1 −

√
y)2. By

Helly-Bray’s theorem,

1
p

log |S|
a.s.
−→

∫ b

a
log xdFy(x) =

∫ b

a

log x
2πxy

√
(x − a)(b − x)dx. (4.4)

As proved in Example 2.11, the last integral equals −d(y).

Theorem 4.4 Under the large-dimensional scheme p ∼ n with p/n → y ∈ (0, 1) and
for a normal population x ∼ N(µ, Ip), p−1 log |S| converges almost surely to −d(y) (the
function d is defined in (4.3)).
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When the population covariance matrix changes from Ip to Σ, the sample generalised
variance is multiplied by |Σ|. We get the following theorem.

Theorem 4.5 Under the large-dimensional scheme p ∼ n with p/n→ y ∈ (0, 1) and for
a normal population x ∼ N(µ,Σ), we have

1
p

log(|S|/|Σ|)
a.s.
−→ −d(y). (4.5)

Therefore, for large-dimensional data, the sample generalised variance is not a con-
sistent estimator of the population generalised variance and in general it has a negative
bias.

It is also worth mentioning that, by Theorems 2.14 and 6.1, Theorems 4.5 and 4.5 are
still valid for non normal samples provided that the population distribution has a finite
fourth moment.

We now give a central limit theorem for the sample generalised variance. In Theo-
rem 4.3, we have proved that for fixed p and n→ ∞,√

n/2p(|S|/|Σ| − 1)
D
−→ N(0, 1).

This result can be used to test hypotheses on the population generalised variance |Σ|.
However, Theorem4.5 indicates that under large-dimensional scheme, such procedures
may suffer from severe inconsistency. The following theorem provides a new central limit
theorem.

Theorem 4.6 Under the conditions of Theorem 4.5, we have

log(|S|/|Σ|) + pd(yn)
D
−→ N(µ, σ2), (4.6)

where yn = p/N and

µ =
1
y

log(1 − y), σ2 = −2 log(1 − y).

One should notice that the centring term in the above theorem depends on the sample
size n (through yn). This is a common feature for large sample covariance matrices since
the convergence of yn → y can be arbitrarily slow. There is then no way to use a centring
term independent from n. Moreover, from the point of view of application, we know
yn only and the limit y exists only virtually. This means that for the calculation of any
parameter involving in an asymptotic limit or distribution, we need always to substitute
yn for the theoretical y.

The proof of Theorem 4.6 is a simple application of the general central limit theo-
rem 3.4 and is left to the reader.

4.2.4 Hypothesis testing and confidence intervals for the generalised
variance

In a straightforward manner, the above central limit theorem can be used for testing hy-
potheses about the generalised variance. To test

H0 : |Σ| = a0, v.s. H1 : |Σ| , a0,



4.2 The generalised variance 51

by using Theorem 4.6, we reject the null hypothesis when∣∣∣∣∣log(|S|/a0) + pd(yn) −
1
yn

log(1 − yn)
∣∣∣∣∣ > zα/2

√
−2 log(1 − yn).

We denote this large-dimensional procedure by [L].
If we use the traditional central limit theorem 4.3, we will reject the null hypothesis

when ∣∣∣∣∣ |S|a0
− 1

∣∣∣∣∣ > zα/2
√

2p/n.

This traditional procedure is referred as [C].
Similarly, using these two central limit theorems, we can design one-sided tests for

alternative hypotheses H1 : |Σ| < a0 and H1 : |Σ| > a0, respectively.
So, which one of the two procedures is better? To answer the question, we conduct a

Monte-Carlo experiment to compare the size and the power of these two procedures. Data
are sampled from N(0, Ip) under the null hypothesis and from N(0, 0.95Ip + 0.051p1′p)
under the alternative hypothesis. The number of independent replications is 10000. Two
sample sizes n = 500 and n = 1000 are combined with 5 dimensions p ∈ {5, 10, 50, 100, 300}.
All the three alternative hypotheses are examined (i.e. two-sided, one-sided lower and
one-sided upper). Empirical results for procedure [L] and [C] are reported in Tables 4.1
and 4.2, respectively.

Table 4.1 Empirical size and power of tests derived from Theorem 4.6.

Size Power

2-sided 1-sided L 1-sided U 2-sided 1-sided L 1-sided U
(p = 300) 0.0513 0.0508 0.0528 1.0 1.0 0.0
(p = 100) 0.0516 0.0514 0.0499 0.997 1.0 0.0
(p = 50) 0.0488 0.0471 0.0504 0.785 0.866 0.0
(p = 10) 0.0507 0.0524 0.0489 0.0732 0.117 0.0168
(p = 5) 0.0507 0.0517 0.0497 0.050 0.0695 0.0331

(n = 500)

(p = 300) 0.0496 0.0496 0.0493 1.0 1.0 0.0
(p = 100) 0.0508 0.0509 0.0515 1.0 1.0 0.0
(p = 50) 0.0523 0.0501 0.0517 0.979 0.990 0.0
(p = 10) 0.0506 0.0498 0.0504 0.0969 0.1591 0.0116
(p = 5) 0.0508 0.0530 0.0494 0.0542 0.0784 0.0288

(n = 1000)

These results can be summarised as follows. The traditional procedure [C] becomes
quickly inconsistent when the dimension p increases: for dimensions exceeding 50, its
size is almost 1 and even for low dimensions such as 5 or 10, the size (two-sided test and
one-sided lower test) is higher than the nominal one (indeed the test statistic has a posi-
tive and diverging drift). By contrast, the large-dimension procedure [L] is consistent as
expected for large dimensions (e.g. 100 and 300). Moreover and what is really surprising,
even for moderate or low dimensions such as 5 or 10, the empirical sizes of [L] remain
almost always better than the traditional procedure [C]. Therefore, one should use the
large-dimensional corrected procedure [L] even for low-dimensional data.
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Table 4.2 Empirical size and power of tests derived from Theorem 4.3.

Size Power

2-sided 1-sided L 1-sided U 2-sided 1-sided L 1-sided U
(p = 300) 1.0 1.0 0.0 1.0 1.0 0.0
(p = 100) 1.0 1.0 0.0 1.0 1.0 0.0
(p = 50) 1.0 1.0 0.0 1.0 1.0 0.0
(p = 10) 0.09 0.14 0.014 0.17 0.26 0.0023
(p = 5) 0.057 0.078 0.031 0.065 0.10 0.019

(n = 500)

(p = 300) 1.0 1.0 0.0 1.0 1.0 0.0
(p = 100) 1.0 1.0 0.0 1.0 1.0 0.0
(p = 50) 0.9817 0.9918 0.0 1.0 1.0 0.0
(p = 10) 0.0666 0.1067 0.0209 0.1801 0.2623 0.0037
(p = 5) 0.0530 0.0696 0.0360 0.0664 0.1040 0.0203

(n = 1000)

Lastly, using the well-known relationship between critical regions of test and confi-
dence intervals, we find a two-sided confidence interval with (asymptotic) level (1 − α)
for the generalised variance:

|Σ| ∈ |S| exp
{

pd(yn) −
1
yn

log(1 − yn) ± zα/2
√
−2 log(1 − yn)

}
.

4.3 The multiple correlation coefficient

Consider a p-dimensional population x = (X1, X2, . . . , Xp) with covariance matrix cov(x) =

Σ. The multiple correlation coefficient between one variable X1 and the vector X2 =

(X2, . . . , Xp)′ in the population is

R̄ =
β′Σ22β√
σ11β

′Σ22β
=

√
β′Σ22β

σ11
=

√
σ′1Σ

−1
22σ1

σ11
,

where β, σ1 Σ22 are defined by

Σ =

(
σ11 σ′1
σ1 Σ22

)
, β = Σ−1

22σ1.

Given a sample x1, . . . , xn (n > p), we estimate Σ by S = [n/N]Σ̂ or

Σ̂ =
1
n

A =
1
n

n∑
k=1

(xk − x̂)(xk − x̂)′ =

(
σ̂11 σ̂′1
σ̂1 Σ̂22

)
=

1
n

(
a11 a∗1
a1 A22

)
.

and we estimate β by β̂ = Σ̂
−1
22 σ̂

′
1 = A−1

22 a1. The sample multiple correlation coefficient is
defined to be

R =

√
β̂
′
Σ̂22β̂

σ̂11
=

√
σ̂′1Σ̂

−1
22 σ̂1

σ̂11
=

√
a′1A−1

22 a1

a11
. (4.7)

(R is also the maximum likelihood estimator of R̄).
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Assume that x = (X1,X2) follows a p-variate normal distribution N(µ,Σ). In case of
R̄ , 0, the sampling distribution of R is complex (cf. Anderson (2003, Chapter 4)). Here
we consider the case of R̄ = 0 where the sampling distribution of R is known such that

R2/(p − 1)
(1 − R2)/(n − p)

D
= Fp−1,n−p , (4.8)

a Fisher distribution with degrees of freedom p − 1 and n − p. It might be observed
that R2/(1 − R2) is the statistic used to test the hypothesis that the regression of X1 on
(X2, . . . , Xp) is 0.

As R2 is always nonnegative so that as an estimator of R̄2 = 0, it has a positive bias.
The adjusted multiple correlation coefficient

R∗2 = R2 −
p − 1
n − p

(1 − R2), (4.9)

attempts to correct this bias. Indeed, this quantity is always smaller than R2 (unless p = 1
or R2 = 1) and it has a smaller bias than R2. However, R∗2 can take negative values with
positive probability, thus contradicts the original interpretation of R2 which is a positive
square. Under the classical limiting scheme where n→ ∞ while p is treated as a constant,

both estimators are consistent, i.e. R2 P
−→ R̄2 and R∗2

P
−→ R̄2. The case of R̄ = 0 can be

seen from (4.8): when n → ∞, Fp−1,n−p
D
−→ χ2

p−1/(p − 1), so that R2/(1 − R2)
P
−→ 0 and

R2 P
−→ 0.

For large-dimensional data however, we will see that these asymptotic consistencies
are no longer valid. We again assume that p/n → y ∈ [0, 1). One might observe that if
p > n (or y > 1), the multiple correlation coefficient can still be defined but will have no
reasonable estimator. For simplicity, we assume normal distributions for the observations.
This restriction can be relaxed following the general theory on sample covariance matrix
developed in Chapters 2 and 3.

4.3.1 Inconsistency of the sample multiple correlation coefficient

Assume that x has the normal distribution N(µ,Σ). Then the matrix A has the Wishart
distribution W(N,Σ) with N = n − 1 degrees of freedom, and thus can be written as

A =

N∑
i=1

ziz∗i ,

where the zi’s are i.i.d. N(0,Σ). Moreover, we represent A as

A = (z1, . . . , zN)(z1, . . . , zN)∗ = (y1, . . . , yp)∗(y1, . . . , yp) ,

where now the y j’s are n-dimensional vectors. Define the matrices Y2 and Y3 such that

(y1, . . . , yp) = (y1,Y2) = (y1, y2,Y3).

Recall the definition (4.7) of the multiple correlation coefficient,

R2 =
a′1A−1

22 a1

a11
,
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we have then

a11 = y′1y1

a1 = Y′2y1 =

(
y′2y1

Y′3y1

)
A22 = Y′2Y2

Y2 = (y2,Y3) = (y2, y3, · · · , yp).

Since the multiple correlation coefficient R2 is invariant with respect to lienar transforma-
tions of y1 or of Y − 2, we can assume that the variables satisfy the relations

Ey j = 0, cov(y j) = IN ,

cov(y1, y2) = RIN ,

cov(yi, y j) = 0, i < j, (i, j) , (1, 2). (4.10)

Since

A22 =

(
y′2y2 y′2Y3

Y′3y2 Y′3Y3

)
,

by inversion formula for block-matrices, we have

A−1
22 = a−1

22·3

[
1 −y′2Y3(Y′3Y3)−1

−(Y′3Y3)−1Y′3y2 (Y′3Y3)−1 + (Y′3Y3)−1Y′3y2y′2Y3(Y′3Y3)−1

]
,

with

a22·3 = y′2(IN − Y3(Y′3Y3)−1Y′3)y2

A33·2 = Y′3

(
IN −

y2y′2
y′2y2

)
Y3.

Therefore

R2 = a−1
11

 (y′1y2 − y′2Y3(Y′3Y3)−1Y′3y1)2

a22·3
+ y′1Y3(Y′3Y3)−1Y′3y1

 . (4.11)

By direct calculation and the strong law of large numbers, we have almost surely,

a11

n
→ 1,

a22·3

n
→ 1 − y,

y′1y2

n
→ R,

1
n

y′2Y3(Y′3Y3)−1Y′3y1 → yR,

1
n

y′1Y3(Y′3Y3)−1Y′3y1 → y. (4.12)

Combining (4.12) and (4.11), we find

Theorem 4.7 For Gaussian observations and assume that p/n→ y ∈ [0, 1),

R2 a.s.
−→ (1 − y)R

2
+ y. (4.13)
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Therefore, under the p ∝ n scheme (y > 0) the sample multiple correlation coeffi-
cient will almost surely over-estimate the population multiple correlation coefficient un-
less R = 1 (an useless situation). Another striking consequence of the theorem is that
the adjusted sample multiple correlation coefficient R∗2 remains consistent under these
large-dimensional schemes, as it can be checked using (4.9). Even when possible nega-
tive values of R∗2 are rounded to 0 (i.e. considering R∗2I{R∗2 ≥ 0}, the modified estimator
remains consistent,

Finally, notice that the scheme p � n (y = 0) extends the classical limit scheme where
the sample multiple correlation coefficient is consistent.

4.3.2 CLT for the sample multiple correlation coefficient

In this section we will find a central limit theorem for R2 under the large-dimensional
scheme. For a given Y3, we may find a N × (p − 2) random matrix E satisfying

EE′ = Y3(Y′3Y3)−1Y′3, E′E = Ip−2. (4.14)

Moreover, we can find another N × (N − p + 2) random matrix F such that Q = (E,F) is
a N-dimensional orthogonal matrix. For j = 1, 2, define

u j = Q′y j =

(
v1 j

v2 j

)
,

where v1 j has dimension (p − 2) and v2 j has dimension (N − p + 2). It is easy to see that
(u1,u2) is a Gaussian vector with mean 0 whose covariance matrix satisfy

cov(u j) = IN , cov(u1,u2) = 0,
cov(v11, v21) = R Ip−2, cov(v12, v22) = RIN−p+2,

cov(v j1, v j2) = 0, j = 1, 2. (4.15)

Since the distribution of (u1,u2) is independent of Y3, they are independent. In correspon-
dence with Eq.(4.11), we have

a11
D
= u′1u1 = v′11v11 + v′12v12

y′1y2 − y′2Y3(Y′3Y3)−1Y′3y1
D
= v′22v12

y′1Y3(Y′3Y3)−1Y′3y1
D
= v′11v11

a22·3
D
= v′22v22.

By standard central limit theorem,

1
√

N
(v′11v11 − (p − 2))

D
→ W1 ∼ N (0, 2y)

1
√

N
(v′12v12 − (N − p + 2))

D
→ W2 ∼ N (0, 2(1 − y))

1
√

N
(v′22v22 − (N − p + 2))

D
→ W3 ∼ N (0, 2(1 − y))

1
√

N
(v′22v12 − (N − p + 2)R)

D
→ W4 ∼ N

(
0, (1 + R

2
)(1 − y)

)
, (4.16)
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where the random variables {W j}1≤ j≤4 are independent. Plugging these relationships (4.16)
into Eq.(4.11) and by the multivariate Delta method, we obtain the following theorem.

Theorem 4.8 Assume p→ ∞, n→ ∞ and p/y→ y ∈ (0, 1). Then

√
N

[
R2 − (1 − yn)R

2
− yn

]
D
−→ N(0, σ2(y)), (4.17)

where yn = (p − 2)/N and

σ2(y) = 2(1 − y)[y + 2R
2

+ (4 − y)R
4
].

Proof By expanding the right-hand side of (4.11) by Taylor’s formula and using (4.16),
we have

√
N

{
R2 − (1 − yn)R

2
− yn

}
' −

[
(1 − yn)R

2
+ yn

]
(W1 + W2) +

2(1 − yn)R
1 − yn

W4 −
(1 − yn)2R

2

(1 − yn)2 W3 + W1

→ (1 − y)(1 − R
2
)W1 − [(1 − y)R

2
+ y]W2 + 2RW4 − R

2
W3.

The asymptotic variance follows from the last formula and the proof is complete. �

Applying the theorem and using the delta method, we obtain the following results.

Corollary 4.9 Under the large-dimensional scheme, we have

√
N

 R2

1 − R2 −
(1 − yn)R

2
+ yn

(1 − yn)(1 − R
2
)

 D
−→ N(0, σ2

f (y)),

where

σ2
f (y) =

2[y + 2R
2

+ (4 − y)R
4
]

(1 − y)3(1 − R
2
)4

.

Corollary 4.10 Under the large-dimensional scheme, we have

√
N

(
R −

√
(1 − yn)R

2
+ yn

)
D
−→ N(0, σ2

o(y)),

where

σ2
o(y) =

(1 − y)[y + 2R
2

+ (4 − y)R
4
]

2[(1 − y)R
2

+ y]
.

One might notice that although the above results are developed using the large-dimensional
theory, they remain valid even for small data dimension p. Indeed firstly, yn = (p − 2)/N
is always a positive number; and secondly, the derivations of Theorem 4.8 and Corollary
4.9 and 4.10 are all valid if y = 0.

Finally, hypothesis testing and confidence intervals can be constructed using Corollary
4.9 or 4.10 and they are left to the reader.
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Notes

Complementary results to the analysis of the multiple correlation coefficient in Section 4.3
can be found in Zheng et al. (2014).



5

Testing hypotheses of equality of covariance
matrices

5.1 Introduction

In this chapter the problem of testing hypotheses on covariance matrices is considered.
At some stage, hypotheses on means of populations are also added into consideration.
Traditionally, two situations are distinguished: the first concerns a single population for
testing the hypothesis that a covariance matrix is equal to a given matrix, or having a
specific structure, i.e. diagonal, proportional to the identity matrix. The second situation
concerns two or more populations where a typical hypothesis is that these populations
have a same covariance matrix.

We start by a review of traditional multivariate procedures for these tests. Most of these
material can be found in more details in Anderson (2003, Chapter 10). Then we develop
corrections or adjustments of these procedures to cope with large-dimensional data.

5.2 Testing equality between several covariance matrices

Let N(µg,Σg), 1 ≤ g ≤ q be q normal distributions of dimension p. For each of these
distributions, say N(µg,Σg), we collect a sample xgk, k = 1, · · · , ng, of size ng. Let n =

n1+· · ·+nq be the total sample size. The aim is to test the hypothesis that the q populations
have a same covariance matrix, that is

Hv0 : Σ1 = · · · = Σq. (5.1)

Let Ω be the general parameter space with arbitrary positive definite matrices Σg and
mean vectors µg. Let also ω ⊂ Ω be the subset restricted by the null hypothesis Σ1 =

· · · = Σq.
Consider first the likelihood ratio test for Hv0. The following results are well-known

from classical multivariate analysis for normal populations (Anderson, 2003, §10.2). First,
the maximum likelihood estimators of µg and Σg in Ω are

µ̂gΩ = x̄g, Σ̂gΩ =
1
ng

Ag, g = 1, · · · , q, (5.2)

where

x̄g =
1
ng

ng∑
k=1

xgk, Ag =

ng∑
k=1

(xgk − x̄g)(xgk − x̄g)
′

. (5.3)

58
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The corresponding maximum likelihood is

LΩ = (2πe)−
1
2 pn

q∏
g=1

∣∣∣Ag/ng

∣∣∣− 1
2 ng

. (5.4)

Under the null hypothesis, the maximum likelihhod estimators are unchanged for the
mean vectors µg. The maximum likelihood estimator for the common covariance matrix
Σ is now

Σ̂ω =
1
n

A, A =

q∑
g=1

Ag.

The corresponding maximum likelihood is

Lω = (2πe)−
1
2 pn |A/n|−

1
2 n . (5.5)

Therefore, the likelihood ratio for testing (5.1) is

λ1 =
Lω

LΩ

=

∏q
g=1

∣∣∣Ag/ng

∣∣∣− 1
2 ng

|A/n|
1
2 n

. (5.6)

The equality hypothesis is rejected at level α if

λ1 ≤ C1(α), (5.7)

for some critival value C1(α).
To improve the accuracy of the likelihood ratio λ1, Bartlett (1937) suggested substitut-

ing the corresponding degrees of freedom for the sample sizes in the Ag’s. This leads to
consider the test statistic

V1 =

q∏
g=1
|Ag|

1
2 Ng

|A| 12 N
, (5.8)

where

Ng = ng − 1, 1 ≤ g ≤ q, N = N1 + · · · + Nq = n − q.

A first insignt about this corrected statistic can ba gained by considering the particular
case of two univariate normal populations, that is, p = 1 and q = 2. The statistic (5.8)
becomes

V1 =
N1

1
2 N1 N2

1
2 N2 (s2

1)
1
2 N1 (s2

2)
1
2 N2

(N1s2
1 + N2s2

2)
1
2 N

=
N1

1
2 N1 N2

1
2 N2 F

1
2 N1

{N1F + N2}
1
2 N

, (5.9)

where s2
1 and s2

2 are the usual unbiased estimators of the two population variances σ2
1 and

σ2
2, respectively. Here, F = s2

1/s2
2 the classical F-ratio with n1 − 1 and n2 − 1 degrees of

freedom. The likelihood ratio test thus reduces to the well-known Fisher test using this
F-ratio.

It is well-known that this likelihood ratio test is invariant with respect to changes of
location within populations and a common linear transformation. An alternative invariant
test procedure (Nagao, 1973b) is based on the criterion

1
2

q∑
g=1

(ng − kg)tr(SgS−1 − I)2 =
1
2

q∑
g=1

(ng − kg)tr(Sg − S)S−1(Sg − S)S−1, (5.10)
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where Sg = Ag/Ng and S = A/N. Here kg = (ng − 1)/(n − q) and
∑

kg = 1.

5.3 Testing equality of several multivariate normal distributions

In this section we want to test the full identity between q multivariate normal distributions.
Therefore, in addition to equality of the population covariance matrices in (5.1), we also
request equality of the population means. The hypothesis to be tested is

H0 : µ1 = µ2 = · · · = µq, Σ1 = Σ2 = · · · ,= Σq. (5.11)

As in the previous section, let xgk, k = 1, · · · , ng, be an observation from N(µg,Σg), g =

1, · · · , q. Then Ω is the general parameter space of {µg,Σg}, g = 1, · · · , q, and ω′ consists
of the sub-space of parameters restricted by (5.11).

The maximum of the likelihood function on Ω is given by Eq. (5.4). Under H0, the
maximum likelihood estimators of the common mean and covariance matrix are

µ̂ω′ = x̄ =
1
n

∑
g,k

xgk , Σ̂ω′ =
1
n

B (5.12)

where

B =

q∑
g=1

ng∑
k=1

(xgk − x̄)(xgk − x̄)′

= A +

q∑
g=1

ng(x̄g − x̄)(x̄g − x̄)′.

The maximum of the likelihood function on ω′ is

Lω′ = (2πe)−
1
2 pn |B/n|−

1
2 n . (5.13)

Therefore, the likelihood ratio criterion for the hypothesis H0 is

λ =
Lω′

LΩ

=

∏q
g=1

∣∣∣Ag/ng

∣∣∣ 1
2 ng

|B/n|
1
2 n

. (5.14)

Notice that since

λ =
Lω′

Lω
·
Lω

LΩ

,

the criterion λ is the product of the likelihood ratio criterion λ1 in (5.6) and the criterion,
say λm in §?? for testing the hypothesis that the means are equal.

Let

V2 =
|A| 12 N

|B| 12 N
= λN/n

m ;

this is equivalent to λm for testing on the means. We might consider as in Bartlett’s cor-
rection,

V = V1V2 =

∏q
g=1 |Ag|

1
2 Ng

|B| 12 N
. (5.15)
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In order to derive the null distribution of the statistic V , let us first consider V1 given by
(5.8). Define

V1g =
|A1 + · · · + Ag−1|

1
2 (N1+···+Ng−1)|Ag|

1
2 Ng

|A1 + · · · + Ag|
1
2 (N1+···+Ng)

, g = 2, · · · , q, (5.16)

then

V1 =

q∏
g=2

V1g.

Theorem 5.1 V12, . . . ,V1q defined by (5.16) are independent when Σ1 = · · · = Σq,
ng > p, g = 1, · · · , q.

The proofs of this theorem and of the following characterisation can be found in An-
derson (2003, §10.3).

Theorem 5.2

V1 =

q∏
g=2

 p∏
i=1

X
1
2 (N1+···+Ng−1)
ig (1 − Xig)

1
2 Ng ·

p∏
i=2

Y
1
2 (n1+···+ng−g)

ig

 ,
where the X’s and Y’s are independent, Xig has the β

[
1
2 (n1 + · · · + ng−1 − g − i + 2), 1

2 (ng − i)
]

distribution, and Yig has the β
[

1
2 (n1 + · · · + ng − g) − i + 1, 1

2 (i − 1)
]

distribution.

Now consider the likelihood ratio criterion λ given in (5.14) for testing the identity
hypothesis (5.11) This is equivalent to the criterion

W =

q∏
g=1
|Ag|

1
2 ng

|A1 + · · · + Aq|
1
2 (n1+···+ng)

·
|A1 + · · · + Aq|

n
2

|A1 + · · · + Aq +
∑q

g=1 ng(x̄g − x̄)(x̄g − x̄)′|
n
2
. (5.17)

The preceding two factors are independent because the first factor is independent of A1 +

· · · + Aq and of x̄1, . . . , x̄q.
The following theorem can be found in Anderson (2003, §10.4).

Theorem 5.3

W =

q∏
g=2

 p∏
i=1

X
1
2 (n1+···+ng−1)
ig (1 − Xig)

1
2 ng ·

p∏
i=2

Y
1
2 (n1+···+ng)

ig

 p∏
i=1

Z
1
2 n
i ,

where the X’s, Y’s, and Z’s are independent, Xig has the β
[

1
2 (n1 + · · · + ng−1 − g − i + 2), 1

2 (ng − i)
]

distribution, Yig has the β
[

1
2 (n1 + · · · + ng − g) − i + 1, 1

2 (i − 1)
]

distribution, and Zi has

the β
[

1
2 n − i, 1

2 (q − 1)
]

distribution.

Unfortunately, the exact distributions given in Theorems 5.1, 5.2 and 5.3 are very com-
plex, especially for large values of p or q. It is therefore reasonable to seek some asymp-
totic approximation for these distributions.

Recall that ng − 1 = kg(n − q), where
∑q

g=1 kg = 1. The expansions are in terms of n − q
increasing with k1, · · · , kq fixed (we could assume only lim Ng/(n− q) = kg > 0). Let also
ϕm(z) = P(χ2

m ≤ z).
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(i) For

λ∗1 = V1 ·
n

1
2 pN∏q

g=1 n
1
2 pNg
g

= V1 ·

q∏
g=1

(
n − q
ng − 1

) 1
2 pNg

=

 q∏
g=1

(
1
kg

)kg


1
2 pN

V1,

and with

ρ = 1 −

 q∑
g=1

1
ng
−

1
n

 2p2 + 3p − 1
6(p + 1)(q − 1)

,

ω2 =
p(p + 1)

48ρ2

(p − 1)(p + 2)

 q∑
g=1

1
Ng

2 −
1

N2

 − 6(q − 1)(1 − ρ)2

 ,
we have

P{−2ρ log λ∗1 ≤ z} = ϕ f (z) + ω2

[
ϕ f +4(z) − ϕ f (z)

]
+ O(n−3). (5.18)

(ii) For λ = Wn
1
2 pn ∏q

g=1 n−
1
2 png

g , with

ρ = 1 −

 q∑
g=1

1
ng
−

1
n

 2p2 + 9p + 11
6(p + 3)(q − 1)

,

and

ω2 =
p(p + 3)

48ρ2

 q∑
g=1

 1
n2

g
−

1
n2

 (p + 1)(p + 2) − 6(1 − ρ)2(q − 1)

 ,
we have

Pr{−2ρ log λ ≤ z} = ϕ f (z) + ω2

[
ϕ f +4(z) − ϕ f (z)

]
+ O(n−3). (5.19)

5.4 The sphericity test

Consider a p-dimensional normal population N(µ,Σ). The population is spherical if Σ =

σ2I for some unspecified positive constant σ2. This is probably the simplest structure one
may assume about a covariance matrix. To test this sphericity hypothesis, namely, the
hypothesis

H0 : Σ = σ2I, σ2 > 0, (5.20)

consider a sample x1, · · · , xn from the population N(µ,Σ). Let Ω be the general parameter
space with arbitrary pair (µ,Σ), and ω ⊂ Ω be the subset restricted by the sphericity
hypothesis H0.

An important characterisation of a spherical covariance matrix is the following. Let
φ1, · · · , φp be the (nonnegative) eigenvalues of Σ. By convexity, the ratio between their
geometric and arithmetic means is not larger than one, that is,∏p

i=1 φ
1/p
i∑p

i=1 φi/p
=
|Σ|1/p

trΣ/p
≤ 1. (5.21)
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The equality holds if and only if the φis are equal, that is, Σ is spherical.
Consider the likelihood ratio test which has a simple form here. First, the maximum

likelihood estimators of µ and Σ in Ω are

µ̂ = x̄ =
1
n

n∑
k=1

xk, Σ̂ =
1
n

A, (5.22)

where

A =

n∑
k=1

(xk − x̄)(xk − x̄)′.

The corresponding maximum likelihood is

LΩ = (2πe)−
1
2 pn

∣∣∣Σ̂∣∣∣− 1
2 n
. (5.23)

Under the null hypothesis, the maximum likelihhod estimator for the mean is still µ̂ = x̄.
Let x̄ = (x̄1, . . . , x̄p)′, and xk = (x̄k1, . . . , x̄kp)′, The maximum likelihood estimator for the
covariance matrix Σ is now

Σ̂ω = σ̂2I,

where

σ̂2 =
1

np

p∑
i=1

n∑
k=1

(xki − x̄i)2 =
1

np

n∑
k=1

‖x̄k − x̄‖2 =
1

np
tr A.

The corresponding maximum likelihood is

Lω = (2πe)−
1
2 pn|σ̂2I|−

1
2 n. (5.24)

Therefore, the likelihood ratio for testing (5.20) is

λ =
Lω

LΩ

=
|Σ̂|

1
2 n

|σ̂2I| 12 n
=

|A| 12 n

(trA/p)
1
2 pn

. (5.25)

The sphericity hypothesis is rejected at level α if

λ ≤ C(α),

for some critival value C(α).
Let l1, · · · , lp be the eigenvalues of the sample covariance matrix S = (n − 1)−1A. Then

λ =

∏ l1/p
i∑

li/p


1
2 pn

, (5.26)

that is, a power of the ratio between their geometric and arithmetic means. This reminds
the characterisation of sphericity (5.21).

Again, the exact distribution of the likelihood ratio λ under the null hypothesis is very
complicate. Similar to previous asymptotic expansions, Bartlett-type expansion for the
distribution of log λ exists. Let f = 1

2 p(p + 1) − 1 and

ρ = 1 −
2p2 + p + 2
6p(n − 1)

,

ω2 =
(p + 2)(p − 1)(p − 2)(2p3 + 6p2 + 3p + 2)

288p2(n − 1)2ρ2 ,
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we have, with ϕm(z) = P(χ2
m ≤ z),

P{−2ρ log λ ≤ z} = ϕ f (z) + ω2

{
ϕ f +4(z) − ϕ f (z)

}
+ O(n−3). (5.27)

Using modern software, we can compute factors c(n, p, α) satisfying

P{−2ρ log λ ≤ c(n, p, α)χ2
f (α)} = α,

or calculate directly p-values. Here χ2
f (α) denotes the αth upper quantile of χ2

f , i.e ϕ−1
f (α).

Other interesting tests exist for the sphericity hypothesis (Anderson, 2003, §10.7.5).
The null hypothesis H : Σ = σ2I is invariant with respect to transformations X∗ = cQX +

ν, where c is a scalar and Q is an orthogonal matrix. It can be shown that the maximum
invariants with respect to these transformations are the p−1 ratios l1/l2, . . . , lp−1/lp, where
the lis are the eigenvalues of the sample covariance matrix S. Any invariant test is based
on functions of these ratios. The likelihood ratio λ is an invariant test. Another invariant
test is proposed by John (1971) with the statistic

1
2

ntr
(
S −

trS
p

I
)

p
trS

(
S −

trS
p

I
)

p
trS

=
1
2

ntr
( p
trS

S − I
)2

=
1
2

n
[

p2

(trS)2 trS2 − p
]

=
1
2

n

 p2

(
∑p

i=1 li)2

p∑
i=1

l2i − p

 =
1
2

n
∑p

i=1(li − l̄)2

l̄2
, (5.28)

where l̄ =
∑p

i=1 li/p. This equation connects a squared loss function for the sample covari-
ance matrix S (left-hand side) with the coefficient of variation of its eigenvalues (right-
hand side). It is worth mentioning yet another interesting invariant test which uses the
statistic l1/lp, that is, the conditioning number of the matrix.

5.5 Testing equality about one covariance matrix

Consider again a p-dimensional normal population N(µ,Σ). The aim here is to test whether
Σ is equal to a given matrix, say Σ0. Because the population is normal and Σ0 is given, the
problem is reduced to test the equality to the identity matrix if we transform data, say x, to
Σ
−1/2
0 x. Therefore, without loss of generality, we consider testing the identity hypothesis

H0 : Σ = I. (5.29)

Consider a sample x1, · · · , xn from the population N(µ,Σ). Similar to the calculations for
the sphericity test in §5.4, the maximum likelihood under the alternative hypothesis is

LΩ = (2πe)−
1
2 pn

∣∣∣Σ̂∣∣∣− 1
2 n
, (5.30)

where

Σ̂ =
1
n

A, A =

n∑
k=1

(xk − x̄)(xk − x̄)′, x̄ =
1
n

n∑
k=1

xk.
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The maximum likelihood under the null hypothesis is

Lω = (2π)−
1
2 pn exp

−1
2

n∑
k=1

(xk − x̄)′(xk − x̄)

 = (2π)−
1
2 pn exp

[
−

1
2

trA
]
. (5.31)

Therefore, the likelihood ratio for testing (5.29) is

λ1 =
(2π)−

1
2 pn exp

[
− 1

2 trA
]

(2πe)−
1
2 pn|A/n|− 1

2 n
=

( e
n

) 1
2 pn
|A|

1
2 ne−

1
2 trA. (5.32)

Sugiura and Nagao (1968) recommended a slightly modified version

λ∗1 =

( e
N

) 1
2 pN
|A|

1
2 Ne−

1
2 trA = e

1
2 pN

(
|S|e−trS

) 1
2 N
, (5.33)

where N = n − 1 and S = A/N, is unbiased. Note that

−
2
N

log λ∗1 = trS − log |S| − p = L1(I,S), (5.34)

where L1(I,S) is a likelihood-based loss function for estimating I by S. This is also easily
expressed using the eigenvalues lis of S, that is,

L1(I,S) =

p∑
i=1

(
li − log li − 1

)
. (5.35)

Naturally, the distance vanishes when S = I, that is, li = 1 for all i.
The distribution of the modified likelihood ratio criterion has also an asymptotic ex-

pansionof Bartlett-type: with ϕm(z) = P(χ2
m ≤ z),

P{−2 log λ∗1 ≤ z} = ϕ f (z) +
γ2

ρ2(n − 1)2

{
ϕ f +4(z) − ϕ f (z)

}
+ O(n−3), (5.36)

where f = 1
2 p(p + 1) and

ρ = 1 −
2p2 + 3p − 1

6n(p + 1)
,

γ2 =
p(2p4 + 6p3 + p2 − 12p − 13)

288(p + 1)
.

5.6 Testing hypotheses of equality of large covariance matrices

5.6.1 Correction of the likelihood ratio test for equality: one-matrix case

Testing whether a population covariance matrix equals a given matrix for a normal popu-
lation can be reduced to the problem of testing whether a population covariance matrix is
unit matrix. In section 5.5, we derive that the criterion of likelihood ratio for the test is as
given in (5.34), i.e.

LRT1 = trS − log |S| − p.

In section 5.5, we discuss the precise distribution of the criterion and derive its asymptotic
expansion. However, as mentioned before, this precise distribution is not easy to use, and
the asymptotic expansion has large error under large dimensional structure. Therefore,
new criteria are needed to deal with large-dimensional data.
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Theorem 5.4 Assume that p ∧ n→ ∞ and p/n→ y ∈ (0, 1). Then

LRT1 − pd1(yN)
D
−→ N(µ1, σ

2
1),

where N = n − 1, yN = p/N and

d1(y) = 1 +
1 − y

y
log(1 − y),

µ1 = −
1
2

log(1 − y),

σ2
1 = −2 log(1 − y) − 2y.

Proof The proof is a simple application of the CLT 3.4 and the substitution principle in
Theorem 3.16 to the linear spectral statistic

1
p

LRT1 = FS(g), g(x) = x − log x − 1 ,

where FS denotes the ESD of the unbiased sample covariance matrix S. In particular,
the value of the centring parameter d1(yN) is calculated in Example 2.11. The limiting
parameters µ1 and σ2

1 can be derived using Proposition 3.8. �

Notice that as shown in its proof, this theorem is also valid for a non-normal pop-
ulation. In this case, the limiting parameters µ1 and σ2

1 are to be adapted according to
Proposition 3.8.

Using the theorem, a test can be designed with critical region

LRT1 ≥ pd1(yN) + µ1 + σ1zα ,

where zα is the αth upper quantile of standard normal. This test is called the corrected
likelihood ratio test for the equality hypothesis.

Using simulation, this criterion is compared to the traditional likelihood ratio λ∗ in
(5.34) with limiting distribution given in (5.36). Empirical results based on 10,000 inde-
pendent replications are reported in Table 5.1.

Table 5.1 Comparison of Type I error and power between corrected likelihood ratio test
and traditional likelihood ratio test

Corrected likelihood ratio test Traditional likelihood ratio test(Wilks)
(p,n) Type I error 5% difference Power Type I error Power

(5, 500) 0.0803 0.0303 0.6013 0.0521 0.5233
(10, 500) 0.0690 0.0190 0.9517 0.0555 0.9417
(50, 500) 0.0594 0.0094 1 0.2252 1
(100, 500) 0.0537 0.0037 1 0.9757 1
(300, 500) 0.0515 0.0015 1 1 1

The powers are evaluated under the alternative hypothesis whereΣ = diag(1, 0.05, 0.05, 0.05, . . .).
From the simulation result, the behaviour of corrected likelihood ratio test becomes better
with increasing dimension. On the other hand, the type I error of the traditional likelihood
ratio test becomes worse with increasing dimension. It is also shown that once dimension
is larger than 15, the corrected likelihood criterion has a satisfactory performance.



5.6 Testing hypotheses of equality of large covariance matrices 67

5.6.2 Correction of likelihood ratio test for equality: two-matrices case

Consider the likelihood ratio criterion for testing the equality of two population covariance
matrices. In §5.3, we discuss the likelihood ratio criterion for testing the equality of q
population covariance matrices and we have seen that its distribution can be decomposed
into the product of q − 1 mutually independent sub-criteria (see Theorem 5.1). Later,
in Theorem 5.2, the likelihood ratio test can be further decomposed into the product of
function of pq − 1 Beta random variables. Although the precise distribution is known in
theory as functions of Beta variables, its numerical evaluation is much too complex for
practical applications especially for large p and q. Therefore, in this section, we provide
the asymptotic distribution under the large dimensional scheme.

First, we introduce the correction of likelihood ratio criterion for testing the equality of
two population covariance matrices. For the criterion V1 defined in Eq. (5.8) with q = 2,
we have with N j = n j − 1, j = 1, 2 and N = N1 + N2,

V1 =
|A1|

N1/2|A2|
N2/2

|A1 + A2|
N/2 = c

1
2 pN1

1 c
1
2 pN2

2 ·
|S1S−1

2 |
N1/2

|c1S1S−1
2 + c2|

N/2
, (5.37)

where S j = A j/N j, j = 1, 2 are the unbiased sample covariance matrices and we have set
c j = N j/N. We first consider the statistic

V∗1 =
|S1S−1

2 |
N1/2

|c1S1S−1
2 + c2|

N/2
. (5.38)

Theorem 5.5 For the criterion V∗1 defined in Eq. (5.38), assume the following large-
dimensional scheme:

yN1 =
p

N1
→ y1 ∈ (0, 1)

yN2 =
p

N2
→ y2 ∈ (0, 1)

Then we have

−
2
N

log V∗1 − pd2(yN1 , yN2 )
D
−→ N(µ2, σ

2
2), (5.39)

where

N j = n j − 1 , j = 1, 2,

d2(y1, y2) =
y1 + y2 − y1y2

y1y2
log

(
y1 + y2

y1 + y2 − y1y2

)
+

y1(1 − y2)
y2(y1 + y2)

log(1 − y2) +
y2(1 − y1)
y1(y1 + y2)

log(1 − y1),

µ2 = µ2(y1, y2) =
1
2

log
(

y1 + y2 − y1y2

y1 + y2

)
−

y1 log(1 − y2) + y2 log(1 − y1)
y1 + y2

,

σ2
2 = σ2

2(y1, y2) = −
2y2

1 log(1 − y2) + y2
2 log(1 − y1)

(y1 + y2)2 − 2 log
(

y1 + y2

y1 + y2 − y1y2

)
.

Moreover,

−
2
N

log V1 − pd̃2(yN1 , yN2 )
D
−→ N(µ2, σ

2
2), (5.40)
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with

d̃2(yN1 , yN2 ) = d2(yN1 , yN2 ) −
yN1

yN1 + yN2

log
yN1

yN1 + yN2

−
yN2

yN1 + yN2

log
yN2

yN1 + yN2

.

Proof Let Fn = S1S−1
2 be the Fisher random matrix associated to the sample covariance

matrices S j’s. By Eq. (5.38),

−
2
N

log V∗1 = log |c1Fn + c2| −
N1

N
log |Fn| = p

∫
f (x)dFn(x) ,

where f (x) = log(c1x+c2)−c1 log(x) and Fn is the ESD of Fn. Notice that c j = yN j/(yN1 +

yN2 ) so that f can be written as

f (x) = log(yN1 + yN2 x) −
yN2

yN1 + yN2

log x − log(yN1 + yN2 ) .

By the two-sample substitution principle in Theorem 3.17, the CLT for − 2
N log V∗1 is given

in Theorem 3.10 where the centring parameter is to be calculated as∫
f (x)dFyN1 ,yN2

(x) ,

while the limiting parameters µ2 and σ2
2 are evaluated with respect to the LSD Fy1,y2 .

The value of the centring parameter can be calculated as in Lemma 2.26 and it equals
d2(yN1 , yN2 ). The values of µ2 and σ2

2 are derived using the results given in Example 3.12.
The last conclusion follows from Eq. (5.37) and the simple fact that c j = yN j/(yN1 +yN2 ).

The proof is complete. �

Again we see by its proof that Theorem 5.5 is also valid for non normal populations
that respect the assumptions used in Theorem 3.10. In this case, the centring parameter
d2(yN1 , yN2 ) remains the same while the limiting parameters µ2 and σ2

2 are to be adapted
according to general results given in Example 3.12.

Using the theorem, a test can be designed with critical region

−
2
N

log V1 ≥ pd̃2(yN1 , yN2 ) + µ2 + σ2zα ,

where zα is the αth upper quantile of standard normal. This test is called the corrected
likelihood ratio test for the equality hypothesis between two covariance matrices.

For different values of (p, n1, n2), empirical sizes and powers of the traditional LR cri-
terion based on V1 with asymptotic distribution given in (5.18) and the corrected LR
criterion are evaluated using simulation with 10,000 independent replications. The nom-
inal test level is 0.05 and real Gaussian variables are used. Results are summarised in
Table 5.2. As we can see, when the dimension p increases, the traditional LR criterion
leads to a dramatically high test size while the corrected LR criterion remains accurate.
Furthermore, for moderate dimensions like p = 20 or 40, the sizes of the traditional LR
criterion are much higher than 5%, whereas the ones of the corrected LR criterion are
very close. By a closer look at the column showing the difference with 5%, we note that
this difference rapidly decreases as p increases for the corrected criterion. Next, empirical
powers are evaluated under the alternative hypothesis Σ1Σ

−1
2 = diag(3, 1, 1, 1, . . .). From

simulation result, it is suggested that once the dimension is larger than 10, the corrected
large dimensional criterion should be applied.



5.6 Testing hypotheses of equality of large covariance matrices 69

Table 5.2 Comparison of Type I error and power between corrected likelihood ratio test
and traditional likelihood ratio test

Corrected likelihood ratio test Traditional likelihood ratio test
(p, n1, n2) Type I error 5% difference Power Type I error Power

(y1, y2) = (0.05, 0.05)
(5, 100, 100) 0.0770 0.0270 1 0.0582 1

(10, 200, 200) 0.0680 0.0180 1 0.0684 1
(20, 400, 400) 0.0593 0.0093 1 0.0872 1
(40, 800, 800) 0.0526 0.0026 1 0.1339 1

(80, 1600, 1600) 0.0501 0.0001 1 0.2687 1
(160, 3200, 3200) 0.0491 -0.0009 1 0.6488 1
(320, 6400, 6400) 0.0447 -0.0053 0.9671 1 1

(y1, y2) = (0.05, 0.1)
(5, 100, 50) 0.0781 0.0281 0.9925 0.0640 0.9849

(10, 200, 100) 0.0617 0.0117 0.9847 0.0752 0.9904
(20, 400, 200) 0.0573 0.0073 0.9775 0.1104 0.9938
(40, 800, 400) 0.0561 0.0061 0.9765 0.2115 0.9975
(80, 1600, 800) 0.0521 0.0021 0.9702 0.4954 0.9998

(160, 3200, 1600) 0.0520 0.0020 0.9702 0.9433 1
(320, 6400, 3200) 0.0510 0.0010 1 0.9939 1

5.6.3 Correction of likelihood ratio test for equality: multiple-matrices case

In section 5.2, the criterion of likelihood ratio for testing the equality of q population co-
variance matrix is derived in Eq. (5.6). In Eq. (5.8), the corresponding Bartlett correction
is given. Similar to the discussion in the previous subsection, the exact distribution of the
likelihood criterion is known to be the one of a product of independent Beta random vari-
ables and this distribution is far too complex for practical use, especially when p or q is
large. We provide below an asymptotic distribution under the large-dimensional setting.

Theorem 5.6 Consider the criterion V1 = V12 × cdots × V1q defined in Eq. (5.8) and
Eq. (5.16) and assume the following large dimensional scheme: for any g = 2, · · · , q

y(g)
n1 =

p
N1 + · · · + Ng−1

→ y(g)
1 ∈ (0, 1),

y(g)
n2 =

p
Ng
→ y(g)

2 ∈ (0, 1).

Therefore,

q∑
g=2

{
−

2
N1 + · · · + Ng

log V1g − pd̃2(y(g)
n1 , y

(g)
n2 )

}
D
−→ N

 q∑
g=2

µ2(y(g)
1 , y(g)

2 ),
q∑

g=2

σ2
2(y(g)

1 , y(g)
2 )

 ,
(5.41)

where d̃2, µ2, σ
2
2 are the functions defined in Theorem 5.5.

Proof According to Theorem 5.1, the factors V1g’s in the decomposition of V1 are mu-
tually independent, and each of them is distributed similarly to V1 for two populations
studied in Theorem 5.5. Therefore, the conclusion follows. �

We notice that it is unclear whether the conclusion of Theorem 5.6 is still valid when
the data has a non-normal distribution. Of course, we still have V1 =

∏q
g=2 V1g, and under
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the condition of 4-th moments,

−
2

N1 + · · · + Ng
log V1g − pd̃2(y(g)

n1 , y
(g)
n2 )

D
−→ N(µ2(y(g)

1 , y(g)
2 ), σ2

2(y(g)
1 , y(g)

2 )).

But we do not know whether the V1g’s are asymptotically independent for non-normal
populations. It is conjectured that this asymptotic independence do hold but a rigorous
proof is still needed.

5.6.4 Correction of likelihood ratio test for equality of several normal
distributions

A problem close to the previous section is to test the equality of q normal distributions.
The Bartlett corrected likelihood ratio test of the hypothesis is given in equation (5.15).
Theorem 5.3 proves that V1 and V2 are independent. Note that log V = log V1 + log V2. To
find the limit distribution of log V , we only need to find the limit distribution of log V2.
With the definition of V2 (see equation (5.15)), we have

log V2 = − log |I +
n − q
q − 1

F|,

where F = (q − 1)−1(B − A)(N−1A)−1 is multivariate F matrix with degree of freedom
[(q − 1),N]. Hence we have the following theorem.

Theorem 5.7 If

y(1)
n1 =

p
q − 1

→ y(1)
1 > 0

y(1)
n2 =

p
n − q

→ y(1)
2 ∈ (0, 1),

Then

log V2 − pd3(y(1)
n1 , y

(1)
n2 )

D
−→ N

[
µ3(y(1)

1 , y(1)
2 ), σ2

3(y(1)
1 , y(1)

2 )
]
, (5.42)

where

d3(y1, y2) =
1 − y2

y2
log

(
α

1 − y2

)
−

y1 + y2

y1y2
log

(
hα − y2β

h(1 − y2)

)

+


1−y1

y1
log

(
α−hβ
1−y2

)
if y1 ∈ (0, 1),

y1−1
y1

log
(
α−h−1β

1−y2

)
if y1 ≥ 1,

µ3 =
1
2

log
(

(α2 − β2)h2

(hα − y2β)2

)
,

σ2
3 = 2 log

(
α2

α2 − β2

)
,

c = y1/y2,

α =
1
2

[√
(1 − y2)2 + c(1 + h)2 +

√
(1 − y2)2 + c(1 − h)2

]
,

β =
1
2

[√
(1 − y2)2 + c(1 + h)2 −

√
(1 − y2)2 + c(1 − h)2

]
.
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Proof First we apply Theorem 2.23 to calculate d3. We use f (x) = − log(1 + cx) =

log
(
|α+zβ|2

(1−y2)2

)
. Then similar to the calculations in Lemma 2.26, we have

d3(y1, y2) =
h2(1 − y2)

4πi

∮
|z|=1

log
(
1 + c |1+hz|2

(1−y2)2

)
(1 − z2)2dz

z(1 + hz)(z + h)(y2 + hz)(y2z + h)

=
h2(1 − y2)

4πi

∮
|z|=1

log
(
|α+βz|2

(1−y2)2

)
(1 − z2)2dz

z(1 + hz)(z + h)(y2 + hz)(y2z + h)

=
h2(1 − y2)

2πi

∮
|z|=1

log
(
α+βz
1−y2

)
(1 − z2)2dz

z(1 + hz)(z + h)(y2 + hz)(y2z + h)

=
1 − y2

y2
log

(
α

1 − y2

)
−

y1 + y2

y1y2
log

(
hα − y2β

h(1 − y2)

)

+


1−y1

y1
log

(
α−hβ
1−y2

)
if y1 ∈ (0, 1),

y1−1
y1

log
(
α−h−1β

1−y2

)
if y1 ≥ 1.

Next, we use Theorem 3.10 to calculate µ3 and σ2
3. We have

µ3 = − lim
r↑1

1
2πi

∮
|z|=1

log(|α + zβ|2)
[

z
z2 − r2 −

1
z + y2/h

]
dz

=
1
2

log
(

(α2 − β2)h2

(hα − y2β)2

)
,

σ2
3 = − lim

r↑1

1
2π2

∮ ∮
log(|α + z1β|

2 log(|α + z2β|
2

(z1 − rz2)2 dz1dz2

= 2 log
(

α2

α2 − β2

)
.

�

Corollary 5.8 Under the conditions of Theorems 5.6 and 5.7, we have

log W − p
q∑

g=1

d2(y(g)
n1 , y

(g)
n2 )

D
−→ N

 q∑
g=1

µ2(y(g)
1 , y(g)

2 ),
q∑

g=1

σ2
2(y(g)

1 , y(g)
2 )

 . (5.43)

5.6.5 A large-dimension trace criterion for testing equality of several
normal distributions

With reference to various results found in the previous section, we notice that y(g)
1 , y(g)

2 , g ≥
2 cannot be too close to 1. Otherwise, µ(g)

2 , σ2
2 will become unstable. Likely, y(1)

2 cannot
be too close to 1, otherwise the limiting parameters µ3 and σ2

3 become unstable. However,
µ3 and σ2

3 are still well defined when y(1)
1 equals to or is larger than 1. In such situations,

to reduce the drawback, Nagao’s trace criterion introduced in §5.2 (see Eq. (5.10)) is
a more suitable solution to the test problem. In the classical setting with p fixed, it is
proved that the asymptotic distribution of the criterion is χ2

f with degree of freedom f =
1
2 (q − 1)p(p + 1).

To introduce large-dimensional correction, we first consider the case of q = 2. Recall
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the notations n = n1 + n2, N j = n j − 1, j = 1, 2 and N = N1 + N2. The Nagao’s criterion
is now

N1tr(S1S−1 − I)2 + N2tr(S2S−1 − I)2

= nλtr(F(λF + (1 − λ)I)−1 − I)2 + n(1 − λ)tr((λF + (1 − λ)I)−1 − I)2

= 2nλ(1 − λ)tr(F − I)2(λF + (1 − λ)I)−2,

where λ = N1
N and F = S1S−1

2 . Therefore, the test using tr(F − I)2(λF + (1 − λ)I)−2 is
equivalent to Nagao’s test. We set the following

Theorem 5.9 Assume

yN1 =
p

N1
→ y1 > 0

yN2 =
p

N2
→ y2 ∈ (0, 1).

Then

tr(F − I)2(λF + (1 − λ)I)−2 − pd5(yn1, yn2)
D
−→ N(µ5, σ

2
5), (5.44)

where

d5(y1, y2) = y1 + y2,

µ5 = y1 + y2 + 2y1y2,

σ2
5 = 8

(
(y1 + y2)2 + 2(y1 + y2)(y2

1 + y2
2 − y1y2) + y1y2(2y1 − y2)(2y2 − y1)

)
.

Proof The proof is based on the CLT in Theorem 3.10. Note that λ =
yN2

yN1 +yN2
. Let f (x) =

(x−1)2

(λx+1−λ)2 =
(x−1)2(yN1 +yN2 )2

(yN2 x+yN1 )2 .
For the calculation of d5 and to simplify the notation, we denote (yN1 , yN2 ) simply by

(y1, y2). Applying Theorem 2.23, we need to convert x as

x =
|1 + hz|2

(1 − y2)2 =
(1 + hz)(1 + hz−1)

(1 − y2)2 , |z| = 1.

Then

f (x) = (y1 + y2)2 [(1 + hz)(z + h) − z(1 − y2)2]2

[y2(1 + hz)(h + z) + zy1(1 − y2)2]2

= (y1 + y2)2 [(1 + hz)(z + h) − z(1 − y2)2]2

(y2 + hz)2(h + zy2)2 .

We use the following equation to calculate d5:

d5(y1, y2)

=
h2(1 − y2)
−4πi

∮
|z|=1

[(1 + hz)(z + h) − z(1 − y2)2]2(y1 + y2)2(1 − z2)2

z(1 + hz)(h + z)(y2z + h)3(y2 + hz)3 dz.

The function under the integral has three poles in the unit disk: two simple poles 0 and
−h, and one third-order pole −y2/h. The residues of the two simple poles are respectively,

(1 − y2)(y1 + y2)2

y3
2

, and
(1 − y1)(y1 + y2)2

y3
1

.
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The residue of −y2/h is half of the second-order derivative of the integrand function mul-
tiplied by (z + y2/h)3, which is

h2(y1 + y2)2(1 − y2)[(1 − y2)(h − y2/h) + (y2/h)(1 − y2)2]2(1 − y2
2/h

2)2

2(−y2/h)(1 − y2)(h − y2/h)h3(h − y2
2/h)3

×{[
−4y2 + 2(1 + h2) − 2(1 − y2)2

(1 − y2)(h − y2/h) + y2(1 − y2)2/h
+

4y2/h
1 − y2

2/h
2

+
1

y2/h
−

h
1 − y2

−
1

h − y2/h
−

3y2

h − y2
2/h

]2
+

[ 4h
(1 − y2)(h − y2/h) + y2(1 − y2)2/h

−
2[−2y2 + (1 + h2) − (1 − y2)2]2

[(1 − y2)(h − y2/h) + y2(1 − y2)2/h]2 −
4

1 − y2
2/h

2
−

8y2
2/h

2

(1 − y2
2/h

2)2

+
1

(y2/h)2 +
h2

(1 − y2)2 +
1

(h − y2/h)2 +
3y2

2

(h − y2
2/h)2

]}
= −

(y1 + y2)[(y1 + y2)2(y2
1 + y2

2 − y1y2) − y1y2(y1 + y2)(y2
1 + y2

2) + 2y3
1y3

2]

y3
1y3

2

.

Combining the above results leads to d5(y1, y2) = − 1
2 (sum of residues)= y1 + y2.

The limiting parameters µ5 and σ2
5 are calculated using Theorem 3.10 as follows. First

for the asymptotic mean,

µ5 = lim
r↑1

(y1 + y2)2

2πi

∮
|z|=1

[(1 + hz)(z + h) − z(1 − y2)2]2

(y2 + hz)2(h + zy2)2[
z

z2 − r2 −
1

z + y2/h

]
dz

=
1
2

(y1 + y2)2
[
[(1 + h)2 − (1 − y2)2]2

(h + y2)4 +
[(1 − h)2 − (1 − y2)2]2

(h − y2)4

+
[(1 − y2)(h − y2/h) + y2/h(1 − y2)2]2(−2y2/h)

h2(h − y2
2/h)2(y2

2/h
2 − 1)

×(
−4y2 + 2(1 + h2) − 2(1 − y2)2

(1 − y2)(h − y2/h) + y2/h(1 − y2)2 −
1

y2/h
+

2y2/h
y2

2/h
2 − 1

−
2y2

h − y2
2/h

)
−

2[(1 − y2)(h − y2/h) + y2/h(1 − y2)2]2

2h2(h − y2
2/h)2

×

(
(
−4y2 + 2(1 + h2) − 2(1 − y2)2

(1 − y2)(h − y2/h) + y2/h(1 − y2)2 −
2y2

h − y2
2/h

)2

+
4h

(1 − y2)(h − y2/h) + y2/h(1 − y2)2 −
2[−2y2 + (1 + h2) − (1 − y2)2]2

((1 − y2)(h − y2/h) + y2/h(1 − y2)2)2

+
2y2

2

(h − y2
2/h)2

)]
= y1 + y2 + 2y1y2.

And for the asymptotic variance,

σ2
5 = − lim

r↑1

(y1 + y2)4

π2

∮∮
|z1 |=|z2 |=1

[(1 + hz1)(z1 + h) − z1(1 − y2)2]2

(y2 + hz1)2(h + z1y2)2 ×
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[(1 + hz2)(z2 + h) − z2(1 − y2)2]2

(y2 + hz2)2(h + z2y2)2

1
(z1 − rz2)2 dz1dz2

=
2(y1 + y2)4(1 − y2)2h

πi

∮
|z1 |=1

[(1 + hz1)(z1 + h) − z1(1 − y2)2]2

(y2 + hz1)4(h + z1y2)2 ×( 2y1

(y1 + y2)(1 − y2)
+

2
hz1 + y2

)
dz1

= 8
(
(y1 + y2)2 + 2(y1 + y2)(y2

1 + y2
2 − y1y2) + y1y2(2y1 − y2)(2y2 − y1)

)
.

The proof is complete. �

Consider next the general case with more than two populations. It is unclear how to
extend Nagao’s criterion Eq.(5.10) to this general situation with large dimensional data.
However, we can introduce a similar criterion as follow:

Tq =

q∑
k=2

λktr(Fk − 1)2(ynk2Fk + ynk1I)−2,

where λk are some positive weights, and

Fk = SkS−1
k−1,

Sk =
1

N1 + · · · + Nk
(A1 + · · · + Ak),

ynk2 =
p

Nk
, ynk1 =

p
N1 + · · · + Nk−1

.

For normal populations, F2, · · · ,Fq are mutually independent multivariate F-matrices.
Since each term in Tq has the form of the statistic studied in Theorem 5.9, a CLT for Tq

is readily found as follows.

Corollary 5.10 Assume that ynk j → yk j > 0, k = 2, · · · , q, j = 1, 2 with yk1 ∈ (0, 1).
Then

Tq − p
q∑

k=2

d5λk(ynk1, ynk2)
D
−→ N

 q∑
k=2

λkµ5(yk1, yk2),
q∑

k=2

λ2
kσ

2
5(yk1, yk2)

 , (5.45)

where the functions µ5 and σ2
5 are given in Theorem 5.9.

5.7 Large-dimensional sphericity test

Consider a sample x1, . . . , xn from a p-dimensional multivariate distribution with covari-
ance matrix Σp and mean µ. The sample covariance matrix is

Sn =
1
N

n∑
j=1

(x j − x̄)(x j − x̄)∗, x̄ =
1
n

n∑
j=1

xi . (5.46)

Let (` j) denote its eigenvalues.
The likelihood ratio criterion for the test is given in (5.26) of §5.4, namely

λ =

 (`1 · · · `p)1/p

1
p (`1 + · · · + `p)


1
2 pn

,
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which is a power of the ratio of the geometric mean of the sample eigenvalues to the
arithmetic mean. It is here noticed that in this formula it is necessary to assume that p ≤ n
to avoid null eigenvalues in (the numerator of) λ. If we let n → ∞ while keeping p

fixed, classical asymptotic theory shows that under the null hypothesis, −2 log λ
D
−→ χ2

f ,
a chi-square distribution with degree of freedom f = 1

2 p(p + 1) − 1. This asymptotic dis-
tribution is further refined by the following Box-Bartlett correction (referred as BBLRT),
see Eq. (5.27),

P(−2ρ log λ ≤ x) = ϕ f (x) + ω2

{
ϕ f +4(x) − ϕ f (x)

}
+ O(n−3) , (5.47)

where ϕm(x) = P(χ2
m ≤ x) and

ρ = 1 −
2p2 + p + 2

6pN
, ω2 =

(p + 2)(p − 1)(p − 2)(2p3 + 6p2 + 3p + 2)
288p2N2ρ2 .

By observing that the asymptotic variance of −2 log λ is proportional to tr{Σ(trΣ)−1 −

p−1Ip}
2, John (1971) proposed to use the following statistic, see Eq. (5.28),

T2 =
p2n
2

tr
{
Sn(tr Sn)−1 − p−1Ip

}2

for testing sphericity. When p is fixed and n→ ∞, under the null hypothesis, it also holds

that T2
D
−→ χ2

f . The criterion based on this χ2 limiting is referred to as John’s test. It is
observed that T2 is proportional to the square of the coefficient of variation of the sample
eigenvalues, namely

T2 =
np
2
·

p−1 ∑
(`i − `)2

`
2 , with ` =

1
n

∑
i

`i .

Following the idea of the Box-Bartlett correction, Nagao (1973a) established an expansion
for the distribution function of the statistics T2,

P(T2 ≤ x) = ϕ f (x) +
1
n

{
apϕ f +6(x) + bpϕ f +4(x) + cpϕ f +2(x) + dpϕ f (x)

}
+O(n−2), (5.48)

where

ap =
1

12
(p3 + 3p2 − 12 − 200p−1), bp =

1
8

(−2p3 − 5p2 + 7p − 12 − 420p−1) ,

cp =
1
4

(p3 + 2p2 − p − 2 − 216p−1) , dp =
1
24

(−2p3 − 3p2 + p + 436p−1) .

The criterion based on this expansion is referred to as Nagao’s test.
As discussed in previous chapters, classical multivariate procedures are in general bi-

ased with large-dimensional data. It is again confirmed here by a small simulation ex-
periment that explores the performance of the BBLRT and Nagao’s test with growing
dimension p. The sample size is set to n = 64 while dimension p increases from 4 to
60 (other experiments with larger sample sizes n lead to very similar conclusions), and
the nominal significance level is α = 0.05. The samples come from normal vectors with
mean zero and identity covariance matrix, and each pair of (p, n) is assessed with 10000
independent replications.

Table 5.3 gives the empirical sizes of BBLRT and Nagao’s test. It is found here that
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when the dimension to sample size ratio p/n is below 1/2, both tests have an empirical
size close to the nominal test level 0.05. Then when the ratio grows up, the BBLRT be-
comes quickly biased while Nagao’s test still has a correct empirical size. It is striking that
although Nagao’s test is derived under classical “p fixed, n→ ∞” regime, it is remarkably
robust against dimension inflation.

Table 5.3 Empirical sizes of BBLRT and Nagao’s test at 5% significance level based on
10000 independent replications using normal vectors N(0, Ip) for n = 64 and different

values of p.

(p, n) (4,64) (8,64) (16,64) (32,64) (48,64) (56,64) (60,64)

BBLRT 0.0483 0.0523 0.0491 0.0554 0.1262 0.3989 0.7605
Nagao’s test 0.0485 0.0495 0.0478 0.0518 0.0518 0.0513 0.0495

In this section, novel corrections to both LRT and John’s test are proposed to cope
with large-dimensional data. These corrections are applicable to non-normal populations
and it will be shown that John’s test is robust against the inflation of the dimension, i.e.
its limiting distribution under the large-dimensional scheme coincides with its limiting
distribution derived under the classical low-dimensional scheme.

It is thus not assumed anymore that the population is normal. The data structure is as
follows. The observations x1, . . . , xn have the representation x j = Σ1/2

p X j where the p × n
table {X1, . . . , Xn} = {xi j}1≤i≤p,1≤ j≤n are made with an array of i.i.d. standardised random
variables (mean 0 and variance 1). This setting, quite general, has been e.g. already used
in Chapter ?? and is motivated by the random matrix theory. Furthermore, under the null
hypothesis H0 : Σp = σ2Ip (σ2 is unspecified), we notice that both LRT and John’s
test are independent of the scale parameter σ2 under the null. Therefore, we can assume
w.l.o.g. σ2 = 1 when dealing with the null distributions of these test statistics. This will
be assumed in all the sections.

Similar to the CLT’s in Chapter 3, an indicator κ is set to 2 when {xi j} are real-valued
and to 1 when they are complex-valued. Let β = E|xi j|

4 − 1 − κ be the fourth cumulant
of the variables for both cases. Note that for normal variables, β = 0 (recall that for a
standard complex-valued normal random variable, its real and imaginary parts are two
iid. N(0, 1

2 ) real random variables).

5.7.1 The corrected likelihood ratio test (CLRT)

For the correction of LRT, let Ln = −2n−1 log λ be the test statistic for n ≥ 1.

Theorem 5.11 Assume {xi j} are iid, satisfying Exi j = 0, E|xi j|
2 = 1, E|xi j|

4 < ∞. Then
under H0 and when p

N = yN → y ∈ (0, 1),

Ln + (p − N) · log(1 −
p
N

) − p

D
−→ N

{
−
κ − 1

2
log(1 − y) +

1
2
βy,−κ log(1 − y) − κy

}
. (5.49)

Proof Recall that for the Marčenko-Pastur distribution Fy of index y < 1, the following
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integrals are calculated in Example 2.12:

Fy(log x) =
y − 1

y
log(1 − y) − 1 , Fy(x) = 1.

Let An ≡
∑p

i=1 log `i − pFyN (log x) and Bn ≡
∑p

i=1 `i − pFyN (x). By the one-sample substi-
tution principle in Theorem 3.16 and Proposition 3.8, we have that(

An

Bn

)
D
−→ N(µ1,V1).

Here the limiting parameters (µ1,V1) are calculated in Proposition 3.8 and they equal

µ1 =

(
κ−1

2 log(1 − y) − 1
2βy

0

)
,

and

V1 =

(
−κ log(1 − y) + βy (β + κ)y

(β + κ)y (β + κ)y

)
.

Consequently, −An + Bn is asymptotically normal with mean − κ−1
2 log(1 − y) + 1

2βy and
variance

V1(1, 1) + V1(2, 2) − 2V1(1, 2) = −κ log(1 − y) − κy.

Besides,

Ln = −Σ
p
i=1 log `i + p log(

1
p

Σ
p
i=1`i)

= −(An + pFyN (log x)) + p log(
1
p

(Bn + p))

= −An − pFyN (log x) + p log(1 +
Bn

p
).

Since Bn
D
−→ N(0, y(β+κ)), Bn = Op(1) and log(1+ Bn/p) = Bn/p+Op(1/p2). Therefore,

Ln = −An − pFyN (log x) + Bn + Op(
1
p

) .

The conclusion then follows and the proof is complete. �

The test based on this asymptotic normal distribution is referred as the corrected likelihood-
ratio test (CLRT). One may observe that the limiting distribution of the test crucially de-
pends on the limiting dimension-to-sample-size ratio y through the factor − log(1 − y).
In particular, the asymptotic variance will blow up quickly when y approaches 1, so it is
expected that the power will seriously break down. Monte-Carlo experiments in §5.7.3
will provide more details on this behaviour.

5.7.2 The corrected John’s test (CJ)

Earlier than the asymptotic expansion (5.48) given in Nagao (1973a), John (1971) proved
that when the observations are normal, the sphericity test based on T2 is a locally most
powerful invariant test. It is also established in John (1972) that under these conditions,
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the limiting distribution of T2 under H0 is χ2
f with degree of freedom f = 1

2 p(p + 1) − 1,
or equivalently,

NU − p
D
−→

2
p
χ2

f − p ,

where for convenience, we have let U = 2(np)−1T2 and recall that N = n− 1 is the degree
of freedom of the sample covariance matrix Sn. This limit is established for n → ∞ and
a fixed dimension p. However, if we now let p → ∞ in the right-hand side of the above
result, it is not hard to see that 2

pχ
2
f − p will tend to the normal distribution N(1, 4). It then

seems “natural” to conjecture that when both p and n grow to infinity in some “proper”
way, it may happen that

NU − p
D
−→ N(1, 4) . (5.50)

Theorem 5.12 Assume {xi j} are iid, satisfying Exi j = 0, E|xi j|
2 = 1, E|xi j|

4 < ∞, and let
U = 2(np)−1T2 be the test statistic. Then under H0 and when p→ ∞, n→ ∞, p

N = yN →

y ∈ (0,∞),

NU − p
D
−→ N(κ + β − 1, 2κ) . (5.51)

The proof of Theorem 5.12 is based on the following lemma.

Lemma 5.13 Let {`i}1≤i≤p be the eigenvalues of the sample covariance matrix Sn. Then
under H0 and the conditions of Theorem 5.12, we have( ∑p

i=1 `
2
i − p(1 + yn)∑p
i=1 `i − p

)
D
−→ N(µ2,V2),

with

µ2 =

(
(κ − 1 + β)y

0

)
,

and

V2 =

(
2κy2 + 4(κ + β)(y + 2y2 + y3) 2(κ + β)(y + y2)

2(κ + β)(y + y2) (κ + β)y

)
.

Proof Let f (x) = x2 and g(x) = x. Define Cn and Bn by the decomposition
p∑

i=1

`2
i = p

∫
f (x)d(Fn(x) − FyN (x)) + pFyN ( f ) = Cn + pFyN ( f ) ,

p∑
i=1

`i = p
∫

g(x)d(Fn(x) − FyN (x)) + pFyN (g) = Bn + pFyN (g) .

By the one-sample substitution principle in Theorem 3.16 and the CLT Theorem 3.4, we
have (

Cn

Bn

)
D
−→ N

( (
E X f

E Xg

)
,

(
cov(X f , X f ) cov(X f , Xg)
cov(Xg, X f ) cov(Xg, Xg)

) )
.

It remains to evaluate the limiting parameters and this results from the following calcula-
tions:

I1( f , r) =
h2

r2 , (5.52)
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I1(g, r) = 0 , (5.53)

I2( f ) = h2 , (5.54)

I2(g) = 0 , (5.55)

J1( f , g, r) =
2h2 + 2h4

r2 , (5.56)

J1( f , f , r) =
2h4 + (2h + 2h3)2r

r3 , (5.57)

J1(g, g, r) =
h2

r2 , (5.58)

J2( f , g) = 2h2 + 2h4 , (5.59)

J2( f , f ) = (2h + 2h3)2 , (5.60)

J2(g, g) = h2 . (5.61)

The results (5.53), (5.55), (5.58) and (5.61) are exactly the same as those found in the
proof of Proposition 3.8. The remaining results are found by similar calculations using
Proposition 3.6 and their details are omitted. �

Proof (of Theorem 5.12). The result of Lemma 5.13 can be rewritten as:

N
 p−1 ∑p

i=1 `
2
i − 1 − p

N −
(κ+β−1)y

p

p−1 ∑p
i=1 `i − 1

 D
−→ N

( (
0
0

)
,

1
y2 · V2

)
.

Define the function f (x, y) = x
y2 − 1, then U = f (p−1Σ

p
i=1`

2
i , p−1Σ

p
i=1`i). We have

∂ f
∂x

(1 +
p
N

+
(κ + β − 1)y

p
, 1) = 1 ,

∂ f
∂y

(1 +
p
N

+
(κ + β − 1)y

p
, 1) = −2(1 +

p
N

+
(κ + β − 1)y

p
) ,

f (1 +
p
N

+
(κ + β − 1)y

p
, 1) =

p
N

+
(κ + β − 1)y

p
.

By the delta method,

N
(
U − f (1 +

p
N

+
(κ + β − 1)y

p
, 1)

) D
−→ N(0, lim C),

where

C =

 ∂ f
∂x (1 +

p
N +

(κ+β−1)y
p , 1)

∂ f
∂y (1 +

p
N +

(κ+β−1)y
p , 1)

T

·
(

1
y2 V2

)
·

 ∂ f
∂x (1 +

p
N +

(κ+β−1)y
p , 1)

∂ f
∂y (1 +

p
N +

(κ+β−1)y
p , 1)


−→ 2κ .

Therefore,

N(U −
p
N
−

(κ + β − 1)y
p

)
D
−→ N(0, 2κ) ,

that is,

NU − p
D
−→ N(κ + β − 1, 2κ) .
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The proof of Theorem 5.12 is complete. �

The test based on the asymptotic normal distribution given in Theorem 5.12 is referred
as the corrected John’s test (CJ) for sphericity. A striking fact in this theorem is that
as in the normal case, the limiting distribution of CJ is independent of the dimension-
to-sample-size ratio y = lim p/n. In particular, the limiting distribution derived under
classical scheme (p fixed, n → ∞), e.g. the distribution 2

pχ
2
f − p in the normal case,

when used for large p, stays very close to this limiting distribution derived for large-
dimensional scheme (p → ∞, n → ∞, p/n → y ∈ (0,∞)). In this sense, Theorem 5.12
gives a theoretical explanation to the widely observed robustness of John’s test against
the dimension inflation. Moreover, CJ is also valid for the p larger (or much larger) than
n case in contrast to the CLRT where this ratio should be kept smaller than 1 to avoid null
eigenvalues.

It is also worth noticing that for real normal data, we have κ = 2 and β = 0 so that

the theorem above reduces to NU − p
D
−→ N(1, 4). This is exactly the result discussed

in Ledoit and Wolf (2002). Besides, if the data has a non-normal distribution but has the

same first four moments as the normal distribution, we have again NU − p
D
−→ N(1, 4),

which turns out to have a universality property.
Note that the limiting parameters in Theorems 5.11 and 5.12 depend on the parameter β,

which is in practice unknown with real data when the 4th order moment of the population
does not coincide with the one of a normal population. A consistent estimate of β is thus
needed for a practical use of these theorems.

5.7.3 Monte Carlo study

Monte Carlo simulations are conducted to find empirical sizes and powers of CLRT and
CJ. In particular, here the following questions are examined: how robust are the tests
against non-normal distributed data and what is the range of the dimension to sample
ratio p/n where the tests are applicable.

For comparison, the performance of the LW test using the asymptotic N(1, 4) distri-
bution in (5.50) (Notice however this is the CJ test under normal distribution) and the
Chen’s test (denoted as C for short) using the asymptotic N(0, 4) distribution derived in
Chen et al. (2010) are evaluated. The nominal test level is set to be α = 0.05, and for each
pair of (p, n), we run 10000 independent replications.

Consider two scenarios with respect to the random vectors xi :

(a) xi is p-dimensional real random vector from the multivariate normal population N(0, Ip).
In this case, κ = 2 and β = 0.

(b) xi consists of iid real random variables with distribution Gamma(4, 2) − 2 so that xi j

satisfies E xi j = 0, E x4
i j = 4.5. In this case, κ = 2 and β = 1.5.

Table 5.4 reports the sizes of the four tests in these two scenarios for different values
of (p, n). When {xi j} are normal, LW (=CJ), CLRT and C all have similar empirical sizes
tending to the nominal level 0.05 as either p or n increases. But when {xi j} are Gamma-
distributed, the sizes of LW are higher than 0.1 no matter how large the values of p and n
are while the sizes of CLRT and CJ all converge to the nominal level 0.05 as either p or
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Table 5.4 Empirical sizes of LW, CJ, CLRT and C test at 5% significance level based on
10000 independent applications with real N(0, 1) random variables and with real

Gamma(4,2)-2 random variables.

(p, n) N(0, 1) Gamma(4,2)-2
LW/CJ CLRT C LW CLRT CJ C

(4,64) 0.0498 0.0553 0.0523 0.1396 0.074 0.0698 0.0717
(8,64) 0.0545 0.061 0.0572 0.1757 0.0721 0.0804 0.078
(16,64) 0.0539 0.0547 0.0577 0.1854 0.0614 0.078 0.0756
(32,64) 0.0558 0.0531 0.0612 0.1943 0.0564 0.0703 0.0682
(48,64) 0.0551 0.0522 0.0602 0.1956 0.0568 0.0685 0.0652
(56,64) 0.0547 0.0505 0.0596 0.1942 0.0549 0.0615 0.0603
(60,64) 0.0523 0.0587 0.0585 0.194 0.0582 0.0615 0.0603

(8,128) 0.0539 0.0546 0.0569 0.1732 0.0701 0.075 0.0754
(16,128) 0.0523 0.0534 0.0548 0.1859 0.0673 0.0724 0.0694
(32,128) 0.051 0.0545 0.0523 0.1951 0.0615 0.0695 0.0693
(64,128) 0.0538 0.0528 0.0552 0.1867 0.0485 0.0603 0.0597
(96,128) 0.055 0.0568 0.0581 0.1892 0.0539 0.0577 0.0579

(112,128) 0.0543 0.0522 0.0591 0.1875 0.0534 0.0591 0.0593
(120,128) 0.0545 0.0541 0.0561 0.1849 0.051 0.0598 0.0596

(16,256) 0.0544 0.055 0.0574 0.1898 0.0694 0.0719 0.0716
(32,256) 0.0534 0.0515 0.0553 0.1865 0.0574 0.0634 0.0614
(64,256) 0.0519 0.0537 0.0522 0.1869 0.0534 0.0598 0.0608

(128,256) 0.0507 0.0505 0.0498 0.1858 0.051 0.0555 0.0552
(192,256) 0.0507 0.054 0.0518 0.1862 0.0464 0.052 0.0535
(224,256) 0.0503 0.0541 0.0516 0.1837 0.0469 0.0541 0.0538
(240,256) 0.0494 0.053 0.0521 0.1831 0.049 0.0533 0.0559

(32,512) 0.0542 0.0543 0.0554 0.1884 0.0571 0.0606 0.059
(64,512) 0.0512 0.0497 0.0513 0.1816 0.0567 0.0579 0.0557

(128,512) 0.0519 0.0567 0.0533 0.1832 0.0491 0.0507 0.0504
(256,512) 0.0491 0.0503 0.0501 0.1801 0.0504 0.0495 0.0492
(384,512) 0.0487 0.0505 0.0499 0.1826 0.051 0.0502 0.0507
(448,512) 0.0496 0.0495 0.0503 0.1881 0.0526 0.0482 0.0485
(480,512) 0.0488 0.0511 0.0505 0.1801 0.0523 0.053 0.0516

n gets larger. This empirically confirms that normal assumptions are needed for the result
of Ledoit and Wolf (2002) while the corrected criteria CLRT and CJ (also the C test) do
not need such distributional restriction.

As for empirical powers, two alternatives are considered (here, the limiting spectral
distributions of Σp under these two alternatives differ from that under H0):

(1) Power 1: Σp is diagonal with half of its diagonal elements 0.5 and half 1;
(2) Power 2: Σp is diagonal with 1/4 of the elements equal 0.5 and 3/4 equal 1.

Table 5.5 reports the powers of LW(=CJ), CLRT and C when {xi j} are distributed as
N(0, 1), and of CJ, CLRT and C when {xi j} are distributed as Gamma(4,2)-2, for the
situation when n equals 64 or 128, with varying values of p and under the above mentioned
two alternatives. For n = 256 and p varying from 16 to 240, all the tests have powers
around 1 under both alternatives so that these values are omitted. And in order to find
the trend of these powers, we also present the results when n = 128 in Figure 5.1 and
Figure 5.2.
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Table 5.5 Empirical powers of LW, CJ, CLRT and C test at 5% significance level based
on 10000 independent applications with real N(0, 1) random variables and with real

Gamma(4,2)-2 random variables under two alternatives Power 1 and 2 (see the text for
details).
N(0, 1)

(p, n) Power 1 Power 2
LW/CJ CLRT C LW/CJ CLRT C

(4,64) 0.7754 0.7919 0.772 0.4694 0.6052 0.4716
(8,64) 0.8662 0.8729 0.8582 0.5313 0.6756 0.5308
(16,64) 0.912 0.9075 0.9029 0.5732 0.6889 0.5671
(32,64) 0.9384 0.8791 0.931 0.5868 0.6238 0.5775
(48,64) 0.9471 0.7767 0.9389 0.6035 0.5036 0.5982
(56,64) 0.949 0.6663 0.9411 0.6025 0.4055 0.5982
(60,64) 0.9501 0.5575 0.941 0.6048 0.3328 0.5989

(8,128) 0.9984 0.9989 0.9986 0.9424 0.9776 0.9391
(16,128) 0.9998 1 0.9998 0.9698 0.9926 0.9676
(32,128) 1 1 1 0.9781 0.9956 0.9747
(64,128) 1 1 1 0.9823 0.9897 0.9788
(96,128) 1 0.9996 1 0.9824 0.9532 0.9804

(112,128) 1 0.9943 1 0.9841 0.881 0.9808
(120,128) 1 0.9746 1 0.9844 0.7953 0.9817

Gamma(4, 2) − 2

(p, n) Power 1 Power 2
CJ CLRT C CJ CLRT C

(4,64) 0.6517 0.6826 0.6628 0.3998 0.5188 0.4204
(8,64) 0.7693 0.7916 0.781 0.4757 0.5927 0.4889
(16,64) 0.8464 0.8439 0.846 0.5327 0.633 0.5318
(32,64) 0.9041 0.848 0.9032 0.5805 0.5966 0.5667
(48,64) 0.9245 0.7606 0.924 0.5817 0.4914 0.5804
(56,64) 0.9267 0.6516 0.9247 0.5882 0.4078 0.583
(60,64) 0.9288 0.5547 0.9257 0.5919 0.3372 0.5848

(8,128) 0.9859 0.9875 0.9873 0.8704 0.9294 0.8748
(16,128) 0.999 0.999 0.9987 0.9276 0.9699 0.9311
(32,128) 0.9999 1 0.9999 0.9582 0.9873 0.9587
(64,128) 1 0.9998 1 0.9729 0.984 0.9727
(96,128) 1 0.999 1 0.9771 0.9482 0.9763

(112,128) 1 0.9924 1 0.9781 0.8747 0.9763
(120,128) 1 0.9728 1 0.9786 0.7864 0.977

The behaviour of Power 1 and Power 2 in each figure related to the three statistics are
similar, except that Power 1 is much higher compared with Power 2 for a given dimension
design (p, n) and any given test for the reason that the first alternative differs more from
the null than the second one. The powers of LW (in the normal case), CJ (in the Gamma
case) and C are all monotonically increasing in p for a fixed value of n. But for CLRT,
when n is fixed, the powers first increase in p and then become decreasing when p is
getting close to n. This can be explained by the fact that when p is close to n, some of
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the eigenvalues of Sn are getting close to zero, causing the CLRT nearly degenerate and
losing power.
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Figure 5.1 Empirical powers of LW/CJ, CLRT and C test at 5% significance level based
on 10000 independent applications with real N(0, 1) random variables for fixed n = 128
under two alternatives Power 1 and 2 (see the text for details).
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Figure 5.2 Empirical powers of CJ, CLRT and C test at 5% significance level based on
10000 independent applications with real Gamma(4,2)-2 random variables for fixed n =
128 under two alternatives Power 1 and 2 (see the text for details).

Besides, in the normal case the trend of C’s power is very much alike of those of LW
while in the Gamma case it is similar with those of CJ under both alternatives. And in
most of the cases (especially in large p case), the power of C test is slightly lower than
LW (in the normal case) and CJ (in the Gamma case).

Lastly, consider the performance of CJ and C when p is larger than n. Empirical
sizes and powers are presented in Table 5.6. We choose the variables to be distributed
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as Gamma(4,2)-2 since CJ reduces to LW in the normal case, and Ledoit and Wolf (2002)
has already reported the performance of LW when p is larger than n. From the table, we
see that when p is larger than n, the size of CJ is still correct and it is always around the
nominal level 0.05 as the dimension p increases and the same phenomenon exists for C
test.

Table 5.6 Empirical sizes and powers (Power 1 and 2) of CJ test and C test at 5%
significance level based on 10000 independent applications with real Gamma(4,2)-2

random variables when p ≥ n.

(p, n) CJ C
Size Power 1 Power 2 Size Power 1 Power 2

(64,64) 0.0624 0.9282 0.5897 0.0624 0.9257 0.5821
(320,64) 0.0577 0.9526 0.612 0.0576 0.9472 0.6059
(640,64) 0.0558 0.959 0.6273 0.0562 0.9541 0.6105
(960,64) 0.0543 0.9631 0.6259 0.0551 0.955 0.6153

(1280,64) 0.0555 0.9607 0.6192 0.0577 0.9544 0.6067

Here again power functions are evaluated under the same two alternatives Power 1
and Power 2 as above. The sample size is fixed to n = 64 and the ratio p/n varies from
1 to 20. Power 1 is in general much higher than Power 2 for the same reason that the
first alternative is easier to be distinguished from H0. Besides, the powers under both
alternatives all increase monotonically for 1 ≤ p/n ≤ 15. However, when p/n is getting
larger, say p/n = 20, we can observe that its size is a little larger and powers a little drop
(compared with p/n = 15) but overall, it still behaves well, which can be considered as
free from the assumption constraint “p/n → y”. Besides, the powers of CJ are always
slightly higher than those of C in this “large p small n” setting.

Since the asymptotic distribution for the CLRT and CJ are both derived under the
“Marcenko-Pasture scheme” (i.e p/n→ y ∈ (0,∞)), if p/n is getting too large (p � n), it
seems that the limiting results provided in this paper will loose accuracy.

Summarizing all these findings from this Monte-Carlo study, the overall figure is the
following: when the ratio p/n is much lower than 1 (say smaller than 1/2), it is preferable
to employ CLRT (than CJ, LW or C); while this ratio is higher, CJ (or LW for normal
data) becomes more powerful (slightly more powerful than C).

We conclude the section by the following remarks.

(i) The asymptotic distributions derived for the CLRT and the CJ test are universal in the
sense that they depend on the distribution of the observations only through its first four
moments;

(ii) These corrected test procedures improve quickly when either the dimension p or the
sample size n gets large. In particular, for a given sample size n, within a wide range of
values of p/n, higher dimensions p lead to better performance of these corrected test
statistics.

(iii) CJ is particularly robust against the dimension inflation. Monte-Carlo study shows that
for a small sample size n = 64, the test is effective for 0 < p/n ≤ 20.
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Notes

Large-dimensional tests on covariance matrices developed in §5.6 are due to Bai et al.
(2009).

For the sphericity test with large-dimensional data, results in §5.7 are due to Wang
and Yao (2013). Related work is done in Ledoit and Wolf (2002), which confirms the
robustness of John’s test in large-dimensions; however, these results assume a normal
population. Following the idea of this paper, Chen et al. (2010) proposed to use a family
of well selected U-statistics to test the sphericity; this test is compared by simulation
in §5.7.3. Another criterion is proposed in Srivastava et al. (2011) following Srivastava
(2005) under non-normality, but with the moment condition E |xi j|

4 = 3 + O(p−ε), for
some ε > 0 which essentially matches asymptotically the normal case where E |xi j|

4 = 3.
It is worth noticing that John’s test under normality assumption has been extended for
“ultra-dimensional” data, i.e. p ∧ n→ ∞ and p/n→ ∞ in Birke and Dette (2005).



6

Large-dimensional spiked population models

6.1 Introduction

Principal component analysis is a widely-used data exploration tool in multivariate statis-
tics. Consider a p-variate population x with population covariance matrix Σ = cov(x) and
let Sn be the sample covariance matrix based on a sample x1, . . . , xn of size n. In a princi-
pal component analysis, one seeks the successively orthogonal directions that maximally
explain the variation in the data, that is,

λ j = max
{

u′Snu : ‖u‖ = 1, u ⊥ u1, . . . ,u j−1 , j = 1, . . . , n ∧ p
}
.

Here a key question emerges: how many principal components should be retained as being
“significant”? The scree plot is one of the many graphical and informal methods that have
been proposed. One plots the ordered sample eigenvalues, and looks for an “elbow”, or
other break between presumably significant and presumably unimportant components.

Two such scree plots are given in Figures 6.1 and 6.2. The data shown on Figure 6.1 is
a small speech data set collecting 162 instances of a phoneme “dcl” spoken by about 50
males. Each instance is calculated as a periodogram on 256 points. So here n = 162 and
p = 256. The scree-plot shows clearly three large sample eigenvalues, but what about the
fourth, fifth, etc.?

The data set on Figure 6.2 consists in daily returns of 488 stock prices listed in the S&P
500 index from September, 2007 to September 2011 (1001 trading days, 12 stocks have
been removed because of missing values). So here p = 488 and n = 1000. Among the
488 eigenvalues of the empirical correlation matrix, the 10 largest are

{237.95, 17.76, 14.00, 8.76, 5.29, 4.85, 4.39, 3.49, 3.08, 2.71}.

These values clearly separate from the rest of 478 eigenvalues and should then be included
as principal components. Are there any other valuable principal components among the
rest? From the scree-plot shown on the figure, it is again unclear how many other principal
components are significant.

In both examples, it appears clearly that the eigenvalues of a sample covariance matrix
(or sample correlation matrix) from real-life data can be distinguished in two general area:
the bulk, which refers to the properties of the majority of eigenvalues, and the extremes,
which addresses the (first few) largest and smallest eigenvalues. However, as experienced
by the elbow rule, the exact cutting-point between these two areas can hardly be known.

The Marčenko-Pastur law and its generalisation introduced in Chapter 2 provide an

86
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Figure 6.1 (a) a single instance of a periodogram from the phoneme data-set; (b) ten instances,
to indicate variability; (c) scree-plot of eigenvalues in phoneme example.

Figure 6.2 (a) a single time series of daily-returns from the S&P 500 data-set; (b) 5 instances,
to indicate variability; (c) scree-plot of 478 sample eigenvalues (excluding the 10 largest).

accurate model for the description of the bulk spectrum. It is well established that the bulk
spectrum of a sample covariance matrix for a large class of large-dimensional populations
converges to a Marčenko-Pastur distribution, see Theorem 2.14.

The situation for extreme eigenvalues is more intricate. In the so-called null case, i.e.
the population x has p i.i.d. standardised components (as in Theorem 2.9), we have the
following result.

Theorem 6.1 Let {xi j}, i, j = 1, 2, . . . , be a double array of i.i.d. complex-valued random
variables with mean 0, variance 1 and finite fourth-order moment. Consider the sample
covariance matrix Sn defined in Eq.(2.7) where xk = (x1k, . . . , xpk)′ and denote its eigen-
values in a decreasing order as λ1 ≥ λ2 ≥ · · · ≥ λp. When p/n→ y > 0,

λ1
a.s.
−→ by = (1 +

√
y)2, (6.1)

λmin
a.s.
−→ ay = (1 −

√
y)2, (6.2)

where

λmin =

λp, for p ≤ n,

λp−n+1, otherwise.

In other words, in the null case, the largest and the smallest eigenvalues are packed
together near the right edge by and the left edge ay of the limiting Marčenko-Pastur law,
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respectively. In addition, the fluctuation of the largest eigenvalue λ1 has been characterised
in this null case. Let

µnp =
1
n

{
(n − 1)

1
2 + p

1
2

}2
,

σnp =
1
n
{(n − 1)

1
2 + p

1
2 }

{
(n − 1)−

1
2 + p−

1
2

} 1
3
.

Notice that for large p and n, µnp ' b = (1 +
√

y)2 (right edge of the Marčenko-Pastur
law). Then, under the same conditions as in Theorem 6.1,

λ1 − µnp

σnp

D
−→ F1, (6.3)

where F1 is the Tracy-Widom law of order 1 whose distribution function is given by

F1(s) = exp
{

1
2

∫ ∞

s
[q(x) + (x − s)2q2(x)]dx

}
, s ∈ R,

where q solves the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x).

The distribution function F1 has no closed-form formula and is evaluated by numerical
software. In particular, F1 has mean -1.21 and standard deviation 1.27.

However, the largest sample eigenvalues of the phoneme data set or the S&P 500 daily
returns in Figures 6.1 and 6.2 clearly separate from the bulk and they are not packed
together as in the null case. These largest eigenvalues do not obey the limiting laws above
for the null case. Such new situations are hereafter referred as non-null cases.

Nicely enough, much of the behaviour of the extreme eigenvalues in such non null
cases can be mathematically explained within the framework of spiked population model.
In its simplest form, the population covariance matrix Σ in a spiked population model has
only m non-unit eigenvalues,

spec (Σ) = {α1, . . . , αm, 1, . . . , 1} . (6.4)

This model is referred as Johnstone’s spiked population model. The m non-unit eigenval-
ues are called spike eigenvalues.

Assume further n → ∞, p/n → y > 0. As the number of spikes m is fixed, it is easily
seen that the ESD of Sn still converges to the Marčenko-Pastur law (Theorem 2.9). How-
ever, the asymptotic behaviour of the extreme eigenvalues of Sn as well as the associated
eigenvectors is greatly modified by the m spike eigenvalues. This chapter is devoted to a
detailed account of such modifications due to the large dimension p.

6.2 Limits of spiked sample eigenvalues

The spiked population model above is extended as follows. Assume that the observed
vectors are xi = Σ

1
2 yi, i = 1, . . . , n where yi are i.i.d. p-dimensional vectors with mean 0,

variance 1 and i.i.d. components (this model is already used in §2.4). Therefore, {xi} is a
sequence of i.i.d. random vectors with mean 0 and population covariance matrix Σ.
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Furthermore, Σ has the structure:

Σ =

(
Λ 0
0 Vp

)
. (6.5)

It is assumed that

(i) Λ is of size m × m where m is a fixed integer. The eigenvalues of Λ are α1 > · · · >

αK > 0 of respective multiplicity m1, . . . ,mK (so that m = m1 + · · · + mK). Denote by
J j the set of m j indexes of α j in the matrix Σ.

(ii) The ESD Hp of Vp converges to a nonrandom limiting distribution H.
(iii) The sequence of the largest eigenvalue of Σ is bounded.
(iv) The eigenvalue {βp j} of Vp are such that

sup
j

d(βp j,ΓH) = εp → 0,

where d(x, A) denotes the distance of x to a set A and ΓH the support of H.

Definition 6.2 An eigenvalue α of Λ is called a generalised spike, or simply a spike, if
α < ΓH .

Such a model is called a generalised spiked population model. Roughly speaking, the
population eigenvalues of Σ are composed of a main spectrum made with the {βp j}’s, and
a small and finite spectrum of m spikes eigenvalues that are well separated from the main
spectrum (in the sense of Definition 6.2).

The following assumptions are also needed.

(v) Eyi j = 0, E|yi j|
2 = 1 and E|yi j|

4 < ∞.
(vi) p/n→ y > 0, p ∧ n→ ∞.

The analysis below is carried out using a decomposition into blocks of size m and p−m,
respectively:

xi =

(
x1i

x2i

)
, yi =

(
y1i

y2i

)
.

Define the sample covariance matrix as

Sn =
1
n

n∑
k=1

xkx∗k =
1
n

(
X1X∗1 X1X∗2
X2X∗1 X2X∗2

)
=

(
S11 S12

S21 S22

)
, (6.6)

where

X1 = (x11, · · · , x1n), X2 = (x21, · · · , x2n) . (6.7)

Define also the analogous decomposition for the yi vectors to the data matrices Y1 and Y2

satisfying

X1 = Λ
1
2 Y1, X2 = V

1
2
p Y2. (6.8)

An eigenvalue λi of Sn that is not an eigenvalue of S22 satisfies

0 = |λiIp − Sn| = |λiIp−m − S22| · |λiIm −Kn(λi)|, (6.9)

where

Kn(l) = S11 + S12(lIp−m − S22)−1S21.
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Since for large n, it will holds eventually that |λiIp−m − S22| , 0,

|λiIm −Kn(λi)| = 0. (6.10)

Consider now a real number l outside the support of the LSD of S22 and the goal is to
find the limit of the random matrix Kn(l) with fixed dimension m. It holds

Kn(l) = S11 + S12(lIp−m − S22)−1S21

=
1
n

X1

{
In +

1
n

X∗2(lIp−m −
1
n

X2X∗2)−1X2

}
X∗1

=
l
n

X1(lIn −
1
n

X∗2X2)−1X∗1

=
l
n
Λ

1
2 Y1(lIn −

1
n

X∗2X2)−1Y∗1Λ
1
2 . (6.11)

The above deduction has used the following identity: for l , 0 which is not an eigenvalue
of A∗A,

In + A(lIp−m − A∗A)−1A∗ ≡ l(lIn − AA∗)−1. (6.12)

Since by assumption l is outside the support of the LSD Fy,H of S22, for large enough n,
the operator norm of (lIn −

1
n X∗2X2)−1 is bounded. By the law of large numbers,

Kn(l) = Λ ·

l · 1
n

tr
(
lIn −

1
n

X∗2X2

)−1 + oa.s.(1)

= −Λ · ls(l) + oa.s.(1), (6.13)

where s is the Stieltjes transform of the LSD of 1
n X∗2X2.

If for some sub-sequence {i} of {1, . . . , n}, λi → l a.s. where l is as above, it holds
then Kn(λi) → −Λls(l) a.s. Therefore necessarily, l is an eigenvalue of −Λls(l), that is
l = −α jls(l), or equivalently

s(l) = −1/α j. (6.14)

Recall the ψ-function defined in (2.20),

ψ(α) = ψy,H(α) = α + y
∫

tα
α − t

dH(t), (6.15)

which is the functional inverse of the function x 7→ −1/s(x). Moreover, ψ is well-defined
for all α < ΓH . Overall, we have proved that if such limit l exists, l necessarily satisfies
the equation

l = ψ(α j) ,

for some α j. Furthermore, by Proposition 2.17, l = ψ(α j) is outside the support of the
LSD Fy,H if and only if ψ′(α j) > 0.

In summary, the above analysis shows that if α j is a spike eigenvalue such that l = ψ(α j)
is the limit for some sub-sequence of sample eigenvalues {λi}, then necessarily ψ′(α j) > 0.
It turns out that this is also a sufficient condition for such limit to exist as given in the
following theorem.

Theorem 6.3 (a) For a spike eigenvalue α j satisfying

ψ′(α j) > 0,
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there are m j sample eigenvalues λi of S with i ∈ J j such that

λi
a.s.
−→ ψ j = ψ(α j), (6.16)

(b) For a spike eigenvalue α j satisfying

ψ′(α j) ≤ 0,

there are m j sample eigenvalues λi of S with i ∈ J j such that

λi
a.s.
−→ γ j,

where γ j is the γ-th quantile of Fy,H with γ = H(−∞, α j] and H the LSD of Vp.

For the proof of this theorem, interested reader can refer to the references given at
the end of the chapter. The theorem separates spike eigenvalues into two groups; those
with a positive ψ′ can be identified as fundamental spikes and the others with a non-
positive ψ′ as non fundamental spikes. A fundamental spike α j is that for large enough
n, exactly m j sample eigenvalues will cluster in a neighbourhood of ψy,H(α j) which is
outside the support of the LSD Fy,H . These limits are also seen as outliers compared to
the bulk spectrum of the sample covariance matrix. Sample eigenvalues converging to a
limit ψ(α j) lying outside the support of the LSD are hereafter referred as spiked sample
eigenvalues.

Notice that the separation above between fundamental and non-fundamental spike eigen-
values depend not only on the base population spectral distribution H but also on the lim-
iting ratio y. For instance, it can be seen from Eq. (6.15) that for fixed H and when y→ 0,
the function ψy,H tends to the identity map so that ψ′ tends to the constant function 1. This
means that provided y is small enough, any spike eigenvalue α j is a fundamental spike and
there will be m j spiked sample eigenvalues converging to ψy,H(α j). In particular, when y
is close to zero (i.e. p is much smaller than n), we will have ψy,H(α j) ' α j. In other words,
this scheme recovers the consistency property usually observed under a low-dimensional
scenario, namely the sample eigenvalues converge all to the corresponding population
eigenvalues when the sample size is much larger than the dimension p.

For the function ψ in Eq. (6.15), we have

ψ′(α) = 1 − y
∫

t2

(α − t)2 dH(t) , ψ′′(α) = 2y
∫

t2

(α − t)3 dH(t) .

Assume that H has a compact support, ΓH = [θ, ω] with edge points θ ≤ ω. From the
expressions of the derivatives, it is easily seen that

(i) for α < θ, ψ is concave and varies from −∞ to −∞ where ψ′ = 0 at a unique point, say
ζ1. Therefore, any spike α < ζ1 is a fundamental spike, while a spike ζ1 ≤ α < θ is a
non-fundamental one.

(ii) for α > ω, ψ is convex and varies from ∞ to ∞ where ψ′ = 0 at a unique point, say
ζ2. Therefore, any spike α > ζ2 is a fundamental spike, while a spike ω < α ≤ ζ2 is a
non-fundamental one.
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6.2.1 Johnstone’s spiked population model

For Johnstone’s spiked population model (6.4), Vp = Ip−m and PSD H = δ1. We have

ψ(α) = α +
yα
α − 1

,

and

ψ′(α) = 1 −
y

(α − 1)2 .

This particular ψ-function is plotted on Figure 6.3 for y = 1
2 and has the following prop-

erties,

• its range equals (−∞, ay] ∪ [by,∞) ;
• ψ(1 −

√
y) = ay , ψ(1 +

√
y) = by;

• ψ′(α) > 0⇔ |α − 1| >
√

y, i.e. ζ1,2 = 1 ±
√

y.

Figure 6.3 The function α 7→ ψ(α) = α + yα/(α − 1) which maps a spike eigenvalue α to
the limit of an associated sample eigenvalue in Johnstone’s spiked population model. Figure
with y = 1

2 ; [1 ∓
√

y] = [0.293, 1.707]; [(1 ∓
√

y)2] = [0.086, 2.914] .

The exact content of Theorem 6.3 for Johnstone’s spiked population model is sum-
marised in the following corollary.

Corollary 6.4 When Vp = Ip−m, it holds that

(i) large fundamental spikes: for α j > 1 +
√

y,

λi
a.s.
−→ α j +

yα j

α j − 1
, i ∈ J j ;

(ii) large non-fundamental spikes: for 1 < α j ≤ 1 +
√

y,

λi
a.s.
−→ (1 +

√
y)2; i ∈ J j ;
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(iii) small non-fundamental spikes: for 1 −
√

y ≤ α j < with y < 1, or α j < 1 with y ≥ 1,

λi
a.s.
−→ (1 −

√
y)2, i ∈ J j .

(iv) small fundamental spikes: for α j < 1 −
√

y with y < 1,

λi
a.s.
−→ α j +

yα j

α j − 1
, i ∈ J j .

It is worth noticing that when y ≥ 1, a fundamental spike is necessarily greater than 1
as α < 1 −

√
y becomes impossible.

6.2.2 An example with non-extreme spike eigenvalues

When ΓH has several compact components, say ΓH = ∪1≤ j≤K[θ j, ω j], the situation for
extreme spike eigenvalues on the left of θ1 or on the right of ωK is similar to previously,
i.e.

(i) for α < θ1, ψ is concave and varies from −∞ to −∞ where ψ′ = 0 at a unique point,
say ζ1. Therefore, any spike α < ζ1 is a fundamental spike, while a spike ζ1 ≤ α < θ is
a non-fundamental one.

(ii) for α > ωK , ψ is convex and varies from ∞ to ∞ where ψ′ = 0 at a unique point, say
ζ2. Therefore, any spike α > ζ2 is a fundamental spike, while a spike ω < α ≤ ζ2 is a
non-fundamental one.

However, for non-extreme spike eigenvalues, i.e. spikes lying between the K support
intervals [θ j, ω j], the situation is a bit more complicate. Such a ψ-function is given in
Example 2.18 where ψ = ψ0.3,H with H = 1

3 (δ1 + δ4 + δ10), see also Figure 2.3 that depicts
its use for the determination of the support of the corresponding LSD F0.3,H; this support
consists in two intervals [0.32, 1.37] and [1.67, 18.00].

Consider next a spiked covariance matrix Σ for which the LSD remains the same F0.3,H .
Precisely, Σ is diagonal with three base eigenvalues {1, 4, 10}, nearly p/3 times for each
of them, and there are four spike eigenvalues (α1, α2, α3, α4) = (15, 6, 2, 0.5), with
respective multiplicities (mk) = (3, 2, 2, 2) so that m =

∑
mk = 9. The limiting population-

sample ratio is taken to be y = 0.3 while the population spectral distribution H is the
uniform distribution on {1, 4, 10}. For simulation, we use p − m = 600 so that Σ has the
following 609 eigenvalues:

spec (Σ) = { 15, 15, 15, 10, . . . , 10︸      ︷︷      ︸
200

, 6, 6, 4, . . . , 4︸  ︷︷  ︸
200

, 2, 2, 1, . . . , 1︸  ︷︷  ︸
200

, 0.5, 0.5 }.

From the table

spike αk 15 6 2 0.5

multiplicity nk 3 2 2 2
ψ′(αk) + − + +

ψ(αk) 18.65 5.82 1.55 0.29
descending ranks 1, 2, 3 204, 205 406, 407 608, 609

we see that 6 is a non-fundamental spike for (y,H) while the three others are fundamental
ones. By Theorem 6.3, we know that
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• the 7 spiked sample eigenvalues λSn
j with j ∈ {1, 2, 3, 406, 407, 608, 609} associated

to fundamental spikes tend to 18.65, 1.55 and 0.29, respectively, which are located
outside the support of limiting distribution F0.3,H;

• the two sample eigenvalues λSn
j with j = 204, 205 associated to the non-fundamental

spike 6 tend to a limit located inside the support, the γ-th quantile of the limiting dis-
tribution G where γ = H(0, 6) = 2/3.

These facts are illustrated by a simulated sample displayed in Figure 6.4.

6.3 Limits of spiked sample eigenvectors

Theorem 6.3 can also be used to find the limits of the eigenvectors associated to the spike
eigenvalues.

Theorem 6.5 Let α j be a spike with ψ′(α j) > 0. For any (normalised) eigenvector ui

of Sn associated to a spiked sample eigenvalue λi converging to ψ(α j), define the block
decomposition ui = (u′1i,u

′
2i)
′ with block lengths m and p − m, respectively. Then u1i

converges a.s. to an eigenvector of Λ associated to α j and

lim ‖u1i‖ = d j :=

√
α jψ′(α j)
ψ(α j)

.

In consequence,

lim ‖u2i‖ =

√
1 − d2

j ,

and if the spike α j is simple (i.e. m j = 1), the above limiting vector is unique (up to the
sign).

Proof Suppose λi → ψ j and ui is an eigenvector of Sn associated to λi. By definition,(
λiIm − S11 −S12

−S21 λiIp−m − S22

) (
u1i

u2i

)
=

(
0
0

)
.

Therefore,

(λiIm − S11)u1i − S12u2i = 0
−S21u1i + (λiIp−m − S22)u2i = 0.

Consequently,

u2i = (λiIp−m − S22)−1S21u1i (6.17)

(λiIm −Kn(λi))u1i = 0. (6.18)

Using (6.13), (6.14) and (6.18),

(Im − α
−1
j Λ)u1i = oa.s.(1). (6.19)

This means that the projection of u1i onto the orthogonal complement of the eigenspace
of Λ associated to α j tends to 0.

For the limit of ‖u1i‖, we have by (6.17),

u′2iu2i = u′1iS12(λiIp−m − S22)−2S21u1i .
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Figure 6.4 An example of p = 609 sample eigenvalues (a), and two zoomed views (b) and (c)
on [5,7] and [0,2] respectively. The limiting distribution of the ESD has support [0.32, 1.37] ∪
[1.67, 18.00]. The 9 sample eigenvalues {λSn

j , j = 1, 2, 3, 204, 205, 406, 407, 608, 609 } associ-

ated to the spikes are marked with a blue dot. The eigenvalues λSn
204 and λSn

205 are not spiked and
fall inside the support of the LSD, see (b), while the other seven are spiked sample eigenvalues.
Gaussian entries are used.
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By a method similar to the one leading to (6.13), it holds

S12(λiIp−m − S22)−2S21 = Λ · (s(ψ j) + ψ js′(ψ j)) + oa.s.(1).

On the other hand, by the definition of the ψ-function λ = ψ(α), we have αs(λ) = −1
whenever ψ′(α) > 0. Differentiation with respect to α yields

s′(λ) = −
s(λ)
αψ′(α)

=
1

α2ψ′(α)
. (6.20)

Therefore,

1 = ‖u1i‖
2 + ‖u2i‖

2 = u∗1iu1i

[
1 + α j{s(ψ j) + ψ js′(ψ j)} + oa.s.(1)

]
= ‖u1i‖

2
{

ψ j

α jψ′(α j)
+ oa.s.(1)

}
The first assertion is then proved. The others are obvious. �

Application to the special case of Johnstone’s spiked population model with Vp = Ip−m

yields the following

Corollary 6.6 For Johnstone’s spiked population model with Vp = Ip−m it holds that

(i) For α j > 1 +
√

y, denote the sample eigenvectors associated to λi by ui = (u′1i,u
′
2i)
′,

i = m1 + . . .+ m j−1 + 1, · · · ,m1 + . . .+ m j−1 + m j. Then u1i tends a.s. to an eigenvector
of Σ associated to α j with length

d j =

√
(α j − 1)2 − y

(α j − 1)(α j − 1 + y)
.

Moreover, the length of u2i tends to
√

1 − d2
j .

(ii) For α j < 1 −
√

y and y < 1, denote the sample eigenvectors associated to λi by
ui = (u′1i,u

′
2i)
′, i = p − m j+1 − . . . − mk + 1, · · · , p − m j − . . . − mk. Then the same

conclusions hold for u1i and the length of u2i.

Again it is important to note that when y ≥ 1, a fundamental spike is necessarily greater
than 1 so that no question is raised for spike eigenvectors when α j < 1 −

√
y.

6.4 Central limit theorem for spiked sample eigenvalues

Point-wise limits of spiked sample eigenvalues are derived in Theorem 6.3. In this section,
we derive the corresponding central limit theorems.

The m-dimensional random matrix Kn(l) is introduced in Equation (6.9). From (6.11),
we have

Kn(l) =
l
n
Λ

1
2 Y1(lIn −

1
n

Y∗2VpY2)−1Y∗1Λ
1
2

=
l
n
Λ

1
2 Y1(lIn −

1
n

Y∗2VpY2)−1Y∗1Λ
1
2 −

l
n
Λtr(lIn −

1
n

Y∗2VpY2)−1

−lΛ
{
sn(l) − s(l)

}
− ls(l)Λ
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:=
l
√

n
Λ

1
2 Rn(l)Λ

1
2 − ls(l)Λ + Op(n−1), (6.21)

where sn is the Stieltjes transformation of 1
n Y∗2VpY2 and

Rn(l) =
1
√

n

(
Y1(lIn −

1
n

Y∗2VpY2)−1Y∗1 − Imtr(lIn −
1
n

Y∗2VpY2)−1
)

(6.22)

is a m × m random matrix. In the above derivation, we used sn(l) − s(l) = Op(n−1) which
is a simple consequence of the CLT for linear spectral statistics, e.g. see Theorem 3.9.

6.4.1 Convergence of the matrix-valued process {Rn(l)}

For the establishment of a CLT for spiked sample eigenvalues, the key theory is to prove
the convergence of the sequence of matrix-valued processes

{Rn(l)}, l ∈ U ,

where U is a compact set of indexes outside the support of the LSD Fy,H . The whole
proof is quite technical and we describe in this section its main steps and the tools used.
For missing details, reader is referred to the original paper Bai and Yao (2008).

The proof consists in two steps.

(i) Establish the tightness of the sequence of processes;
(ii) Establish the finite-dimensional convergence of the process.

For Step (i), it is sufficient to prove the following Lipschitz condition: there exists a
constant M such that for any l1, l2 ∈ U ,

E|Rn(l2) − Rn(l1)|2

|l2 − l1|2
≤ M < ∞.

For a reference, see e.g. Theorem 12.3 in Billingsley (1968). This Lipschitz condition can
be proved using standard calculations of the moments and this part is skipped here.

Step (ii) is developed in the remaining of the section. Consider for any L index values
{l j}, the distribution of

(Rn(l1), . . . ,Rn(lL)) (6.23)

conditioning on Y2 is derived using Lemma 6.7 below, Next, as it will be seen, this con-
ditional limiting distribution is in fact independent of the conditioning Y2; it thus equals
the unconditional limiting distribution.

This is done in Theorem 6.10 that is based on the Lemma below on CLT for random
sesquilinear forms.

Consider a sequence {(xi, yi)i∈N} of i.i.d. complex-valued, zero-mean random vectors
belonging to CK × CK with finite 4th-moment. We write

xi = (x`i) =


x1i
...

xKi

 , X` = (x`1, . . . , x`n)′, 1 ≤ ` ≤ K , (6.24)

with a similar definition for the vectors {Y`}1≤`≤K . Set ρ(`) = E[x̄`1y`1].
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Lemma 6.7 Let {An = [ai j(n)]}n be a sequence of n×n Hermitian matrices with bounded
spectral norm and the vectors {X`,Y`}1≤`≤K are as defined in (6.24). Assume that the
following limit exist:

(a) ω = limn→∞
1
n
∑n

k=1 a2
kk(n);

(b) θ = limn→∞
1
n trA2

n = lim 1
n
∑n

k, j=1 |ak, j(n)|2; and
(c) τ = limn→∞

1
n trAnA′n = lim 1

n
∑n

k, j=1 a2
k, j(n).

Then the K-dimensional complex random vector

Zn = (Zn`)K
`=1, Zn` =

1
√

n
(
X∗`AnY` − ρ`trAn

)
,

converges to a zero-mean, complex normal random vector Z (the joint distribution of
real part and imaginary part follows a 2K-dimensional real normal distribution) whose
moment generating function equals

f (c) = Eec′Z = exp(
1
2

c′Bc), c ∈ CK ,

where B = B1 + B2 + B3 with

B1 = ω
(
Ex̄k1yk1 x̄ j1y j1 − ρkρ j

)
, 1 ≤ k, j ≤ K,

B2 = (θ − ω)
(
Ex̄k1y j1Ex̄ j1yk1

)
, 1 ≤ k, j ≤ K,

B3 = (τ − ω)
(
Ex̄k1 x̄ j1Ey j1yk1

)
, 1 ≤ k, j ≤ K, .

Proof In the following, we only give the main steps of the proof and again interested
readers are referred to Bai and Yao (2008) for the missing details.

First, as the base entries {xi j} and {yi j} have a finite 4-th moment we can first truncate
these entries at δn

4
√

n, where δn ↓ 0, and then centralise them without affecting the limits.
Next, we use the moment convergence theorem to prove the lemma. Define

ξn =

K∑
l=1

clZl =
1
√

n

∑
i j

ai jφi j,

where

φi j =


∑K

l=1 cl(x̄ilyil − ρl), i = j,∑K
l=1 cl x̄ily jl, i , j.

The goal is to find the limit of Eξh
n . The power is expanded as in

Eξh
n = n−h/2

n∑
i1, j1,...,ih, jh=1

ai1 j1 ai2 j2 · · · aih, jhE
(
φi1 j1φi2 j2 · · · φih, jh

)
.

Corresponding to each term in the sum, we draw a directed graph G consisting of h edges

i1 → j1, i2 → j2, · · · , ih → jh.

Define the notations

ai1 j1 ai2 j2 · · · aih, jh = aG, φi1 j1φi2 j2 · · · φih, jh = φG.

Each graph G consists of several mutually non-connected subgraphs. These subgraphs
fall into three categories:
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• The first category consists of subgraphs which contain a single loop. Such a subgraph
thus has only one vertex. Assume that we have m1 subgraphs G1t in this category and
the degrees of the vertexes are µ1, . . . , µm1 , respectively. Note that all µt must be pos-
itive even numbers. If there is some µt = 2, the subgraph consists of one loop only
and the corresponding expectation is 0. So, we can assume that µt ≥ 4 for all t. The
contributions of the m1 subgraphs are∣∣∣∣∣∣∣

m1∏
t=1

EφG1t

∣∣∣∣∣∣∣ ≤ K(δnn1/4)
∑m1

t=1(µt−4).

• The second category of subgraphs contain at least one edge not belonging to a loop
and one cycle. Assume that we have m2 subgraphs in this category. Assume that the
s-th subgraph G2s contains us vertexes, the degrees are γ js, j = 1, . . . , us respectively.
If there is some γ js = 1, the value of the term will be 0. Therefore, the contribution of
these m2 connected subgraphs is bounded by∣∣∣∣∣∣∣E

m2∏
s=1

φG2s

∣∣∣∣∣∣∣ ≤ K(δn
4√n)

∑m2
s=1

∑us
j=1(γ js−2).

• The third category of subgraphs contain at least one edge not belonging to a loop but
no cycle. Assume that we have m3 subgraphs in this category. Assume that the s-th
subgraph G3s contains ws vertexes, the degrees are ι js, j = 1, . . . ,ws, respectively.
Similarly, if there is some ι js = 1, the value of the term will be 0. Now, any vertex
of the subgraph must have one loop, otherwise the value of the term equals to 0. The
contribution of these m3 subgraphs does not exceed∣∣∣∣∣∣∣E

m3∏
s=1

φG3s

∣∣∣∣∣∣∣ ≤ K(δn
4√n)

∑m3
s=1

∑ws
j=1(ι js−2)−4I(m3≥0)

Combining these three estimates, the total contribution from non-zero terms is bounded
as

|EφG | ≤ K(δn
4√n)

∑m1
t=1(µt−4)+

∑m2
s=1

∑us
j=1(γ js−2)+

∑m3
s=1

∑ws
j=1(ι js−2)−4I(m3≥0).

Next we estimate the coefficients aG. For any w,
∑n

j=1 |a
w
j j| ≤ Kn, so the contribution

of the vertex in the first category of subgraphs does not exceed Knm1 . For a subgraph
G2s from the second category, assume that G2s has ts non-repeated edges e1, . . . , ets and
us different vertexes v1, . . . , vus , then we can choose one tree consisting of non-repeated
edges, e1, . . . , eus−1. Denote the tree by G2s1 and let the complement G2s2 = G2s −G2s1.

Note that when e = (u, v), u , v,∑
v

|a2
u,v| ≤ ||An||

2 ≤ K,

We have ∑
v1,...,vus

|aG2s | =
∑

v1,...,vus

ts∏
j=1

|ae j |

≤

 ∑
v1,...,vus

us−1∏
j=1

|ae j |
2

∑
v1,...,vus

ts∏
j=us

|a2
e j
|


1/2

≤ Kn(νs+1)/2,
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where νs is the number of connected subgraph consisting of G2s2. Obviously, νs ≥ 1. Here
we use the fact: the contribution of first factor in the parenthesis is bounded by Kn. The
contribution of the second factor does not exceed Knνs .

Similarly, for subgraphs in the third category,

∑
v1,...,vws

|aG3s | =
∑

v1,...,vws

ts∏
j=1

|ae j |

≤

 ∑
v1,...,vws

ws−1∏
j=1

|ae j |
2

∑
v1,...,vws

ts∏
j=ws

|a2
e j
|


1/2

≤ Knws/2.

Finally, let G be the family of all the subgraphs whose contributions are non-negligible.
Their sum can be bounded as follows:

n−h/2
∑
G∈G

aGE (φG)

≤

∗∑
Kn−

h
2 +m1+ 1

2
∑m2

2=1(ν j+1)+ 1
2 (

∑m3
j=1 w j+1)

· (δn
4√n)

∑
(µt−4)+

∑m2
s=1

∑us
j=1(γ js−2)+

∑m3
s=1

∑ws
j=1(ι js−2)−4I(m3≥1)

=

∗∑
Kn−

1
2
∑m2

s=1(us−νs−1)− 1
2 I(m3≥1) · δ

∑
(µt−4)+

∑m2
s=1

∑us
j=1(γ js−2)+

∑m3
s=1

∑ws
j=1(ι js−2)−4I(m3≥1)

n , (6.25)

where
∑∗ is the sum of on the set defined by

∑m1
t=1 µt +

∑m2
s=1

∑us
j=1 γ js +

∑m3
s=1

∑ws
j=1 ι js = 2h.

Obviously, for a term in (6.25) satisfying either m3 > 0, or one of µt > 4, or one of
γ js > 2, or one of us > νs + 1, its contribution is negligible. So we need only to consider
the situation of m3 = 0, µt = 4, γ js = 2 and us = νs + 1. Of course, when γ js = 2,
νs = 1, which means us = 2. This implies 2m1 + 2m2 = h. When h is odd number, this is
impossible. So,

Eξ2h+1
n = o(1), (h ≥ 0).

For Eξ2h
n , we need only to consider the situation of µt = 4, us = 2 and γ js = 2. For each

G1t, it must be composed of Eφ2
j j. For each edge e = (u, v) of G2s, it is composed of Eφ2

uv

or Eφuvφvu. Assume that we have k1 terms of type Eφ2
uv and k2 terms of type Eφuvφvu in

total. Then, we have

Eξ2h
n =

∑
m1+k1+k2=h

(2h)!
nh2hm1!k1!k2!

 n∑
j=1

a2
j jEφ

2
11

m1

·

∑
u,v

auvavuE(φ12φ21)

k1
∑

u,v

a2
uvE(φ2

12)

k2

+ o(1)

=
(2h)!

nh2hh!

Eφ2
11

n∑
j=1

a2
j j + Eφ12φ21

∑
u,v

|a2
uv| + Eφ

2
12

∑
u,v

a2
uv

h

+ o(1). (6.26)

Using elementary calculations leads to

1
n

Eφ2
11

n∑
j=1

a2
j j + Eφ12φ21

∑
u,v

|a2
uv| + Eφ

2
12

∑
u,v

a2
uv

 =
1
2

(c′Bc) + o(1).

The conclusions of the lemma follow and details are skipped. �
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While so far we have allowed various random variables be complex-valued, hereafter
however we focus on the case of real variables in order to simplify the presentation.

A simple application of Lemma 6.7 yields the following CLT for random quadratic
forms.

Theorem 6.8 Let {An = [ai j(n)]}n be a sequence of n × n symmetric matrices satisfying
the conditions of Lemma 6.7. Assume that w1, · · · ,wn are iid m-dimensional real random
vectors, with mean 0 and covariance matrix C = (σi j) = E[w1w′1] and a finite 4th-
moment. Then, the random matrix

Rn =
1
√

n
(
WAnW ′ − C · trAn

)
, where W = (w1, . . . ,wn),

weakly converges to a m × m-dimensional symmetric random matrix R = (Ri j) such that
the joint distribution of {Ri, j, i ≤ j} is a 1

2 m(m + 1)-dimensional Gaussian vector with
mean 0 and covariance function

cov(Ri j,Ri′ j′ ) = ω
{
E(wi1w j1wi′1w j′1) − σi jσi′ j′

}
+ (θ − ω)

{
σi j′σi′ j + σii′σ j j′

}
.(6.27)

Proof Denote the m row vectors of W as W(i), i = 1, . . . ,m. The elements of the matrix
Rn can also be seen as components of a random vector under an appropriate numbering

Zn(l) =
1
√

n

(
X′lAnYl − ρltrAn

)
, l = (i, j), 1 ≤ i ≤ j ≤ m ,

such that when Zn(l) = Rn,i j, Xl = W(i) and Yl = W( j). In particular, ρl = σi j. Applica-
tion of Lemma 6.7 thus leads to the conclusions of the corollary. �

Corollary 6.9 Assume that w1, · · · ,wn are iid m-dimensional real random vectors, with
mean 0 and covariance matrix C = (σi j) = E[w1w′1] and a finite 4th-moment. Then, the
random matrix

Rn =
1
√

n

 n∑
i=1

wiw′i − nC
 ,

weakly converges to a m × m-dimensional symmetric random matrix R = (Ri j) such that
the joint distribution of {Ri, j, i ≤ j} is a 1

2 m(m + 1)-dimensional Gaussian vector with
mean 0 and covariance function

cov(Ri j,Ri′ j′ ) = E(wi1w j1wi′1w j′1) − σi jσi′ j′ . (6.28)

This result can be seen as a CLT for a (fixed) m-dimensional sample covariance matrix∑
i wiw′i with a population covariance matrix C.

Theorem 6.10 For the generalised spiked population model in (6.5), assume that Con-
ditions (i) to (vi) defined thereafter are valid and the base variables {yi j} are real. Then,
the joint distribution of L random matrices defined in (6.22) converges to a multivari-
ate Gaussian vector determined as follows: for any arbitrary L numbers a1, . . . , aL, the
random matrix

R̃n = a1Rn(l1) + · · · + aLRn(lL),

weakly converges to a Gaussian random matrix R = {Ri, j, i ≤ j} where
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(i) the diagonal entries are i.i.d. zero-mean Gaussian with variance

var(Rii) = ω
{
E[|yi1|

4] − 3
}

+ 2θ; (6.29)

(ii) the upper off-diagonal entries are i.i.d. zero-mean Gaussian with variance θ; and
(iii) all these entries are mutually independent.

Here the parameters θ and ω are

θ =

L∑
j=1

a2
j s
′(l j) + 2

∑
j<k

a jak
s(l j) − s(lk)

l j − lk
, (6.30)

ω =

 L∑
j=1

a js(l j)


2

. (6.31)

Proof Recall the block matrices Y1 and Y2 defined in (6.8). We apply Theorem 6.8
by conditioning on Y2. Conditional on Y2, R̃n has the form of Rn in that theorem with
W = Y1, C = Im and

An = a1(l1In −
1
n

Y∗2VpY2)−1 + · · · + aL(lLIn −
1
n

Y∗2VpY2)−1.

To apply the theorem, we first verify the existence of the limits θ and ω for the sequence
{An} as defined in Lemma 6.7, the limit τ being the same as θ for real variables. As l j is
outside the support of Fy,H , from Theorem 2.14,

1
n

tr(l jIn −
1
n

Y∗2VpY2)−1 a.s.
−→ −s(l j),

1
n

tr(l jIn −
1
n

Y∗2VpY2)−2 a.s.
−→ s′(l j),

1
n

tr(l jIn −
1
n

Y∗2VpY2)−1(lkIn −
1
n

Y∗2VpY2)−1 a.s.
−→

s(l j) − s(lk)
l j − lk

.

Therefore, the limit in θ exists as

1
n

trA2
n

a.s.
−→ θ =

L∑
j=1

a2
j s
′(l j) + 2

∑
j<k

a jak
s(l j) − s(lk)

l j − lk
.

As for the limit ω, since the distribution of the distribution of the matrix l jIn −
1
n Y∗2VpY2

is invariant under permutation of its rows, it is seen that the limit of its diagonal elements
is the same as the limit of their average. Therefore,(

l jIn −
1
n

Y∗2VpY2

)−1
a.s.
−→ −s(l j) ,

and

1
n

n∑
j=1

a2
j j

a.s.
−→ ω =

 L∑
j=1

a js(l j)


2

.

Next, for the covariance structure, since C = Im, we have for the limiting matrix R,

cov(Ri j,Ri′ j′ ) = ω
{
E(yi1y j1yi′1y j′1) − δi jδi′ j′

}
+ (θ − ω)

{
δi j′δi′ j + δii′δ j j′

}
, (6.32)

where δαβ is the Kronecker symbol. It is readily checked that
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• For i , i′, cov(Rii,Ri′i′ ) = 0 (between diagonal entries);
• var(Rii) = ω

{
E[|yi1|

4] − 3
}

+ 2θ (diagonal entries);
• For i′ < j′, cov(Rii,Ri′ j′ ) = 0 (between diagonal and upper-diagonal entries);
• For i < j , i′ < j′ and (i, j) , (i′, j′), cov(Ri j,Ri′ j′ ) = 0 (between upper-diagonal

entries);
• For i < j, var(Ri j) = θ (upper-diagonal entries).

The proof of Theorem 6.10 is complete. �

6.4.2 Derivation of the CLT for spiked sample eigenvalues

Let αk be a fundamental spike eigenvalue. Following Theorem 6.3, the mk packed sample
eigenvalues {λ j, j ∈ Jk} are solutions of the equation |λ −Kn(λ)| = 0 for large n and they
converge almost surely to ψk = ψ(αk). Also define the spectral decomposition of Λ to be

Λ = Udiag(α1Im1 , . . . , αKImK )U∗, (6.33)

where U is orthogonal.
By Eq. (6.21), we have

λ jI −Kn(λ j) = λ jI −
λ j
√

n
Λ

1
2 Rn(λ j)Λ

1
2 + λ js(λ j)Λ + OP(n−1) .

Let

δn, j =
√

n(λ j − ψk) , j ∈ Jk,

so that λ j = ψk + δn, j/
√

n. By Taylor expansion,

s(λ j) = s(ψk) +
δn, j
√

n
s′(ψk) + oP(n−

1
2 ).

Therefore,

I − λ−1
j Kn(λ j) =

{
I + s(ψk)Λ

}
−

1
√

n
Λ

1
2 Rn(λ j)Λ

1
2 +

δn, j
√

n
s′(ψk)Λ + oP(n−

1
2 ). (6.34)

By §6.4.1, the process {Rn(l), l ∈ U weakly converges to a matrix-valued Gaussian
process on U . We now follow a method devised in Bai (1985) for limiting distributions
of eigenvalues or eigenvectors from random matrices. First, we use Skorokhod strong
representation so that on an appropriate probability space, the convergence of this process
as well as (6.34) take place almost surely. Multiplying both sides of (6.34) by U∗ from the
left and by U from the right yields

U[I − λ−1
j Kn(λ j)]U∗ =


. . . 0 0
0 {1 + s(ψk)αu}Imu 0

0 0
. . .

 − 1
√

n
U∗Λ

1
2 Rn(λ j)Λ

1
2 U

+
1
√

n


. . . 0 0
0 δn, js′(ψk)αuImu 0

0 0
. . .

 + o(n−
1
2 ) .

First, in the right side of the above, we see that all the non diagonal blocks tend to zero.
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Next, for a diagonal block with index u , k, by definition 1 + s(ψk)αu , 0, and this is
indeed the limit of that diagonal bloc since the contributions from the remaining three
terms tend to zero. As for the the k-th diagonal block, 1 + s(ψk)αk = 0 by definition, the
k-th diagonal block reduces to

−
1
√

n
[U∗Λ

1
2 Rn(λ j)Λ

1
2 U]kk +

1
√

n
δn, js′(ψk)αkImk + o(n−

1
2 ).

For n sufficiently large, its determinant must be equal to zero,∣∣∣∣∣∣− 1
√

n
[U∗Λ

1
2 Rn(λ j)Λ

1
2 U]kk +

1
√

n
δn, js′(ψk)αkImk + o(n−

1
2 )

∣∣∣∣∣∣ = 0 ,

or equivalently, ∣∣∣∣−[U∗Λ
1
2 Rn(λ j)Λ

1
2 U]kk + δn, js′(ψk)αkImk + o(1)

∣∣∣∣ = 0.

Taking into account the convergence of the process {Rn(l), l ∈ U } to {R(l), l ∈ U } as
defined in Theorem 6.10, it follows that δn, j tends to a solution of∣∣∣∣−[U∗Λ

1
2 R(ψk)Λ

1
2 U]kk + λs′(ψk)αkImk

∣∣∣∣ = 0.

that is, an eigenvalue of the mk × mk matrix

[U∗Λ
1
2 R(ψk)Λ

1
2 U]kk

αk s′(ψk)
=

[U∗R(ψk)U]kk

s′(ψk)
.

Moreover, as the index j is arbitrary, all the Jk random variables
√

n{λ j − ψk, j ≤ Jk}

converge almost surely to the set of eigenvalues of the above matrix. Of cause, this con-
vergence also holds in distribution on the new probability space, hence on the original
one.

Finally for the calculation of the variances, let G = R(ψk)/s′(ψk). We have by Theo-
rem 6.10,

θ = s′(ψk), ω = s2(ψk).

Let βy = (E|y11|
4 − 3). Then the variance of a diagonal element of G is

σ2
αk

=
2θ + ωβy

{s′(ψk)}2
=

2
s′(ψk)

+ β
s2(ψk)
{s′(ψk)}2

= α2
kψ
′(αk){2 + βψ′(αk)}.

Here we have used the identities,

s′(ψ(α)) =
1

α2ψ′(α)
, and s(ψ(α)) = −

1
α
.

Summarising, we have proved the following theorem.

Theorem 6.11 For the generalised spiked population model in (6.5), assume that Con-
ditions (i) to (iv) defined thereafter are valid and the random variables {yi j}’s are real. Let
αk be a fundamental spike eigenvalue of multiplicity mk and {λi, i ∈ Jk} the correspond-
ing spiked sample eigenvalues tending to ψk = ψ(αk). Then the mk-dimensional random
vectors

√
n { λi − ψk, i ∈ Jk } ,
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weakly converges to the distribution of eigenvalues of the mk × mk random matrix

Mk = U∗kG(ψk)Uk, (6.35)

where Uk is the k-th block of size mk×mk in U defined in (6.33) corresponding to the spike
αk, and G(ψk) is a Gaussian random matrix with independent entries such that

(i) its diagonal elements are i.i.d. Gaussian, with mean 0 and variance

σ2
αk

:= α2
kψ
′(αk){2 + βyψ

′(αk)} , (6.36)

with βy = (E|y11|
4 − 3) denoting the fourth cumulant of the base entries yi j’s;

(ii) its upper triangular elements are i.i.d. Gaussian, with mean 0 and variance

s2
αk

:= α2
kψ
′(αk) . (6.37)

In particular,

(i) when the base entries {yi j} are Gaussian, βy = 0, and then σ2
αk

= 2s2
αk

: the matrix G is
a real Gaussian Wigner matrix;

(ii) When the spike αk is simple, i.e. mk = 1, the limiting distribution of
√

n{λi − ψk} is
Gaussian.

It is worth noticing that in case Λ is diagonal, U = IK , the joint distribution of the
k-th packed spiked sample eigenvalues is given by the eigenvalues of the Gaussian matrix
G. This joint distribution is non-Gaussian unless the spike eigenvalue αk is simple, i.e.
mk = 1. In this case with U = IK ,

√
n (λi − ψk)

D
−→ N(0, σ2

αk
) (6.38)

with the variance σ2
αk

given in (6.36).

6.4.3 Examples and numeric illustrations of Theorem‘6.11

This section is devoted to describe in more details the content of Theorem 6.11 with sev-
eral meaningful examples together with extended numerical computations. Throughout
the section, we assume Johnstone’s spiked population model so that the base LSD is the
Marčenko-Pastur distribution Fy with index y and

ψ(α) = α +
yα
α − 1

, ψ′(α) = 1 −
y

(α − 1)2 ,

which is well defined for all spike eigenvalues α , 1.

Example 6.12 Gaussian variables where all spike eigenvalues are simple. Assume
that the variables {yi j} are real Gaussian, Λ is diagonal whose eigenvalues {αk} are all
simple. In other words, K = m and mk = 1 for all 1 ≤ k ≤ K. Hence, U = Im. Following
Theorem 6.11, for any spiked sample eigenvalue λi corresponding to a fundamental spike
eigenvalue αk,

√
n(λn,k − λk)

D
−→ N(0, σ2

k)

with the variance given in (6.36), i.e

σ2
k = 2α2

kψ
′(αk) =

2α2
k[(αk − 1)2 − y]

(αk − 1)2 .



106 Large-dimensional spiked population models

Example 6.13 Gaussian variables with some multiple spike eigenvalues. As in the
previous example, the variables {yi j} are real Gaussian. Let y = 0.5 so that the Marčenko-
Pastur distribution Fy has support [ay, by] = [0.086, 2.914]. The critical interval for spike
eigenvalues is [1 −

√
y, 1 +

√
y] = [0.293, 1.707], cf. Figure 6.3.

Consider K = 4 spike eigenvalues (α1, α2, α3, α4) = (4, 3, 0.2, 0.1) with respective
multiplicity (m1,m2,m3,m4) = (1, 2, 2, 1). Let

λn,1 ≥ λn,2 ≥ λn,3 and λn,4 ≥ λn,5 ≥ λn,6

be respectively, the three largest and the three smallest eigenvalues of the sample covari-
ance matrix. Let as in the previous example

σ2
αk

=
2α2

k[(αk − 1)2 − y]
(αk − 1)2 . (6.39)

We have (σ2
αk
, k = 1, . . . , 4) = (30.222, 15.75, 0.0175, 0.00765).

Following Theorem 6.11, we have

• For j = 1 and 6,

δn, j =
√

n[λn, j − φ(αk)]
D
−→ N (0, σ2

αk
). (6.40)

Here, for j = 1, k = 1 , φ(α1) = 4.667 and σ2
α1

= 30.222 ; and for j = 6, k = 4 ,
φ(α4) = 0.044 and σ2

α4
= 0.00765.

• For j = (2, 3) or j = (4, 5), the two-dimensional vector δn, j =
√

n[λn, j − φ(αk)] con-
verges weakly to the distribution of (ordered) eigenvalues of the Gaussian Wigner ran-
dom matrix

G = σαk

(
W11 W12

W12 W22

)
,

where var(W11) = var(W22) = 1 and var(W12) = 1
2 . Since the joint distribution of

eigenvalues of a Gaussian Wigner matrix is known (see Mehta, 2004, e.g.), we get the
following (non-ordered) density for the limiting distribution of δn, j:

g(δ, γ) =
1

4σ3
αk

√
π
|δ − γ| exp

[
−

1
2σ2

αk

(δ2 + γ2)
]
. (6.41)

Here is a numerical that compares the empirical distribution of the δn, j’s to their limiting
value. Dimensions are p = 500 and n = 1000. Empirical distributions of the six random
variables {δn, j, j = 1, . . . , 6} are obtained via 1000 independent simulations leading to

• a kernel density estimate for two univariate variables δn,1 and δn,6, denoted by f̂n,1 f̂n,6,
respectively, and

• a kernel density estimate for two bivariate variables (δn,2, δn,3) and (δn,4, δn,5), denoted
by f̂n,23 f̂n,45, respectively.

The kernel density estimates are computed using the R software implementing an auto-
matic bandwidth selection method from Sheather and Jones (1991).

Figure 6.5 (left panel) compares the two univariate density estimates f̂n,1 and f̂n,6 with
their Gaussian limits (6.40). As it can be seen, the empirical results confirm well the
theoretic limit.

To compare the bivaiate density estimates f̂n,23 and f̂n,45 to their limiting densities given
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Figure 6.5 Empirical density estimates (in solid lines) from the largest (top: f̂n,1 ) and the
smallest (bottom: f̂n,6 ) sample eigenvalue from 1000 independent replications, compared to
their Gaussian limits (dashed lines). Dimensions are p = 500 and n = 1000. Left panel:
Gaussian entries. Right panel: binary entries.

in (6.41), their contour lines are displayed in Figure 6.6, left panel, for f̂n,23 and Figure 6.7,
left panel, for f̂n,45. Again the theoretical result is well confirmed.

Example 6.14 A case with binary entries.
As in the previous example, this example uses y = 0.5 and the same spike eigenvalues

(α1, α2, α3, α4) = (4, 3, 0.2, 0.1) with multiplicities (m1,m2,m3,m4) = (1, 2, 2, 1). Assume
again that Λ is diagonal but this time binary entries {yi j} are considered. That is, both
y1i and and y2i are made with i.i.d. binary variables {ε j} taking values in {+1,−1} with
equiprobability. Notice that E ε j = 0, E ε2

j = 1 and βy = −2. This non-null value denotes
a departure from the Gaussian case.

As in the previous example, the limiting distributions of the three largest and the three
smallest eigenvalues {λn, j, j = 1, . . . , 6} of the sample covariance matrix are examined.
Following Theorem 6.11,

• For j = 1 and 6,

δn, j =
√

n[λn, j − φ(αk)]
D
−→ N (0, s2

αk
), s2

αk
= σ2

αk

y
(αk − 1)2 ,

where σ2
αk

is the limiting variance in (6.39) for the case with Gaussian entries. Com-
pared to the previous Gaussian case, the additional factor y/(αk − 1)2 < 1 (since a fun-
damental spike is such that |αk − 1| >

√
y), so that the limiting Gaussian distributions

of the largest and the smallest eigenvalue are less dispersed.
• For j = (2, 3) or j = (4, 5), the two-dimensional vector δn, j =

√
n[λn, j − φ(αk)] con-

verges weakly to the distribution of (ordered) eigenvalues of the Gaussian random ma-
trix

G = σαk

(
W11 W12

W12 W22

)
. (6.42)

Here, var(W12) = 1
2 as previously but var(W11) = var(W22) = y/(αk − 1)2 < 1. There-

fore, the matrix W = (Wi j) is no more a real Gaussian Wigner matrix. Unlike the
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Figure 6.6 Limiting bivariate distribution from the second and the third sample eigenvalues.
Left panel: Gaussian entries; right panel: binary entries. Top: contour lines of the empirical
kernel density estimates f̂n,23 from 1000 independent replications with p = 500, n = 1000.
Bottom: Contour lines of their limiting distribution, given by the eigenvalues of a 2×2 Gaussian
Wigner matrix on the left panel and and computed using 10000 independent replications on the
right panel.

previous Gaussian case, the joint distribution of the eigenvalues of W is unknown ana-
lytically. Here it is computed empirically by simulating this joint density using 10000
independent replications. Again, as y/(αk − 1)2 < 1, these limiting distributions are less
dispersed than in the previous Gaussian case.

The kernel density estimates f̂n,1, f̂n,6, f̂n,23 and f̂n,45 are computed as in the previous
case using p = 500, n = 1000 and 1000 independent replications.

Figure 6.5 (right panel) compares the two univariate density estimates f̂n,1 and f̂n,6 to
their Gaussian limits. Again, empirical results confirm well the theoretical limit. Notice
however a seemingly slower convergence to the Gaussian limit in this case than in the
previous case with Gaussian entries.

The bivaiate density estimates f̂n,23 and f̂n,45 are then compared to their limiting den-
sities as previously in the right panels of Figures 6.6 and 6.7, respectively. The shapes
of these bivariate limiting distributions are rather different from the previous Gaussian
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Figure 6.7 Limiting bivariate distribution from the second and the third smallest sample eigen-
values. Limiting bivariate distribution from the second and the third sample eigenvalues. Left
panel: Gaussian entries; right panel: binary entries. Top: contour lines of the empirical kernel
density estimates f̂n,45 from 1000 independent replications with p = 500, n = 1000. Bottom:
Contour lines of their limiting distribution, given by the eigenvalues of a 2×2 Gaussian Wigner
matrix on the left panel and computed using 10000 independent replications on the right panel.

case. Notice that the limiting bivariate densities are obtained by simulations of 10000
independent G matrices given in (6.42) in this case with binary entries.

6.5 Estimation of the values of spike eigenvalues

Previous discussions in the chapter show that for a fundamental spike eigenvalue αk of
multiplicity mk, there are mk packed sample eigenvalues {λi, i ∈ Jk} that converge almost
surely to ψk = ψ(αk). Moreover, a related CLT is given in Theorem 6.11. For statistical
applications, it is of primary importance to estimate the spike eigenvalues {αk}. For exam-
ple in principal component analysis, the contribution of the k-th principal component is
given by mkαk/ tr(Σ).
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6.5.1 Estimation when the ψ-function is known

If the functional form of ψ is known, a natural estimator of λk is just α̂k = ψ−1(λi). For
example, for Johnstone’s spiked population model, ψ(α) = α + yα/(α − 1) is known and
this inversion method provides a way for the estimation of the spike eigenvalues {αk}.

Theorem 6.15 Assume that the function ψ is known, define

α̂k =
1

mk

∑
i∈Jk

ψ−1(λi) . (6.43)

Assume the same conditions as in Theorem 6.11 hold. Then
√

n(α̂k − αk)
D
−→

1
mkψ′(ψk)

tr
[
U∗kG(ψk)Uk

]
, (6.44)

which is a centred Gaussian distribution and where Uk and G(ψk) are defined in (6.35).

Proof From Taylor expansion and by Theorem 6.11,

√
n(α̂k − αk) =

√
n

mk

∑
i∈Jk

(ψ−1(λi) − ψ−1(ψk))

=

√
n

mkψ′(αk)

∑
i∈Jk

(λi − ψk) + op(1)

D
−→

1
mkψ′(αk)

tr
[
U∗kG(ψk)Uk

]
,

where Uk and the Gaussian limiting matrix G(ψk) are given in (6.35). Clearly, this distri-
bution is a centred Gaussian. �

6.5.2 Estimation when the ψ-function is unknown

In most of practical cases however, the function ψ is unknown or is much too complicate
for the purpose of estimation of the spike eigenvalues. In this section, a new estimator is
proposed.

The method is based on the fundamental equation (6.14) which states that when a
spiked sample eigenvalue λ j converges to ψk = ψ(αk) for some fundamental spike λk,
then by definition it holds that

αk s(ψk) = −1 .

As the companion Stieltjes transform s of the LSD Fy,H can be consistently estimated
from sample eigenvalues, plugging such an estimate in the above equation leads to a
consistent estimate of αk.

More precisely, for each z < ΓFy,H , the Stieltjes transform of the ESD of a sample
covariance matrix Sn without spike eigenvalues

sn(z) =
1
p

p∑
i=1

1
λi − z

converge almost surely to the Stieltjes transform s of Fy,H . Here (λi)
p
i=1 denotes the p

eigenvalues of Sn. When the population has (a finite number of) spike eigenvalues, the
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above still hold if we exclude in the sum the spiked sample eigenvalues, that is with
J = ∪K

k=1Jk,

s∗n(z) =
1
p

∑
i<J

1
λi − z

a.s.
−→ s(z), z < ΓFy,H .

The same holds true for the companion Stieltjes transforms, denoting yn = p/n,

s∗n(z) = −
1 − yn

z
+

1
n

∑
i<J

1
λi − z

a.s.
−→ s(z). (6.45)

Therefore, for λ j converging to ψk where j ∈ Jk, define

mn, j = −
1 − yn

λ j
+

1
n

∑
i<J

1
λi − λ j

. (6.46)

So mn, j is an analogue of s∗n evaluated at the spiked sample eigenvalue λ j.
The theorem below establishes the consistency of −1/mn, j as an estimator of αk.

Theorem 6.16 Let αk be a fundamental spike eigenvalue from the generalised spiked
population model as defined in §6.2 and satisfying Conditions (i)-(vi). For any j ∈ Jk and
the associated spiked sample eigenvalues λ j, define mn, j as in Eq. (6.46). Then,

−
1

mn, j

a.s.
−→ αk. (6.47)

Proof Since ψk < ΓFy,H , we know already that s∗n(ψk)
a.s.
−→ s(ψk) and then −1/s∗n(ψk)

a.s.
−→

−1/s(ψk) = αk. The difference between mn, j and s∗n(ψk) is

mn, j − s∗n(ψk) =(1 − yn)
(

1
ψk
−

1
λ j

)
+ (λ j − ψk)

1
n

∑
i<J

1
(λi − λ j)(λi − ψk)

.

We have almost surely,

lim inf
{
inf
i<J
|λi − λ j|

}
≥ δ > 0, lim inf

{
inf
i<J
|λi − ψk |

}
≥ δ > 0,

for some positive constant δ. Therefore, since λ j
a.s.
−→ ψk, mn, j − s∗n(ψk)

a.s.
−→ 0 and

−1/mn, j
a.s.
−→ −1/s(ψk) = αk. �

6.6 Estimation of the number of spike eigenvalues

In §6.5, estimators are proposed for fundamental spike eigenvalues. These estimators rely
on the fact that the separation between spike eigenvalues and base eigenvalues is com-
pletely known, that is one knows in advance that there are K fundamental eigenvalues
{αk} with respective multiplicity number mk (1 ≤ k ≤ K). In real-life data analysis as in
the two examples given at the beginning of the chapter, such information is not available
and it has to be inferred from the data either.

The spiked population model is naturally connected to the following signal detection
model. Signals are recorded using p recorders in order to detect an unknown number of
m source signals. As a first approximation, the recorded signals can be thought as linear
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combinations of the source signals. If we denote by xt = (xt1, . . . , xtp)′ the p signals
recorded at time t, and by st = (xt1, . . . , xtp)′ the source signals emitted at time t, we have

xt = Ast + εt , (6.48)

where A is a p × m mixing matrix representing the source-recording mechanism and εt a
measurement error. It is reasonable to assume that (i) the noise and the source signal are
independent; (ii) the noise is centred with a covariance matrix cov(εt) = σ2Ip. Then

Σ = cov(xt) = A cov(st)A′ + σ2Ip .

It is clear that the rank of A cov(st)A′ does not exceed m and if we denote its eigenvalues
by α j with respective multiplicity numbers m j (

∑
m j = m), then clearly

spec(Σ) = (α1, . . . , α1︸      ︷︷      ︸
m1

, . . . , αK , . . . , αK︸       ︷︷       ︸
mK

, 0, . . . , 0︸  ︷︷  ︸
p−m

) + σ2(1, . . . , 1︸  ︷︷  ︸
p

). (6.49)

If we rewrite the spectrum as

spec(Σ) = σ2(α′1, . . . , α
′
1︸      ︷︷      ︸

m1

, . . . , α′K , . . . , α
′
K︸       ︷︷       ︸

mK

, 1, · · · , 1︸   ︷︷   ︸
p−m

), (6.50)

it is readily seen that the model coincide with Johnstone’s spiked population model in-
troduced in §6.2.1 where simply, all the variances are multiplied by the noise variance
σ2. Finding the number m of spikes, or detecting the number m of signals, constitutes
an unavoidable step before envisaging other inference tasks such as the estimation of the
mixing matrix A or estimation of the signal strengths αi (i = 1, . . . ,K).

6.6.1 The estimator

Assume for the moment that all the spike eigenvalues (αk+σ2)1≤i≤m are simple, i.e. mk = 1
and K = m. Moreover, assumed that α′1 > · · · > α′m > 1 +

√
y for all i ∈ {1, . . . ,m};

i.e all the spike eigenvalues are fundamental so that the corresponding spiked sample
eigenvalues converge to a limit outside the support of the LSD. Again let λ1 ≥ · · · ≥ λp

be the sample eigenvalues from Sn. By Corollary 6.4, for each 1 ≤ k ≤ m,

λk
a.s.
−→ σ2ψ(α′k),

and for all 1 ≤ i ≤ L with a prefixed range L,

λm+i
a.s.
−→ b = σ2(1 +

√
y)2.

It is thus possible to built an estimator for m following a close inspection of differences
between consecutive eigenvalues

δ j = λ j − λ j+1, j ≥ 1.

Indeed, the results quoted above imply that a.s. δ j → 0, for j ≥ m whereas for j < m, δ j

tends to a positive limit. Thus it becomes possible to estimate m from index-numbers j
where δ j become small. More precisely, define the estimator of m to be

q̂n = min{ j ∈ {1, . . . , s} : δ j+1 < dn}, (6.51)
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where s > m is a fixed number big enough, and dn is a threshold to be defined. In practice,
s should be thought as a preliminary bound on the number of possible spikes. In fact, in

this case where all the spikes are simple, it can be proved that q̂n
P
−→ m providing that the

threshold satisfies dn → 0, n2/3dn → +∞ and under mild assumptions on the moments of
the base variables {yi j}.

When some of spikes, say αk, are multiple, then δ j = λ j − λ j+1
a.s.
−→ 0 when spiked

sample eigenvalues λ j and λ j+1 are both associated to αk, i.e. { j, j + 1} ⊂ Jk. This fact
creates an ambiguity with those differences δ j corresponding to the noise eigenvalues, i.e.
j ≥ m, which also tend to zero. However, the convergence of the δ j’s, for j > m (noise)
is faster (in OP(n−2/3)) than that of the δ j from a same spike eigenvalue αk (in OP(n−1/2))
following the CLT in Theorem 6.11. This is the key feature that allows a suitable choice
of the threshold dn to guarantee the consistence of the estimator q̂n.

Theorem 6.17 Consider Johnstone’s spiked population model satisfying the assump-
tions (i)-(vi) introduced in §6.2 where the covariance matrix has the structure given in
(6.50). Moreover, the variables {yi j} are assumed to have a symmetric law and a sub-
exponential decay, that means there exists positive constants D, D′ such that, for all
t ≥ D′,

P(|yi j| ≥ tD) ≤ e−t.

Let (dn)n≥0 be a real sequence such that dn = o(n−1/2) and n2/3dn → +∞. Then the
estimator q̂n is consistent, i.e q̂n → m in probability when n→ +∞.

Proof Without loss of generality we can assume that σ2 = 1 (if it is not the case, we
consider λ j/σ

2). The proof is based on the following key properties:

(i) By Theorem 6.11, for a fundamental spike eigenvalue αk, the mk packed eigenvalues
√

n[λ j − ψ(α′k)], j ∈ Jk , (6.52)

has a limiting distribution;
(ii) a technical result stating that for all 1 ≤ i ≤ L with a prefixed range L,

n
2
3 (λm+i − b) = OP(1), (6.53)

which is a direct consequence of Proposition 5.8 of Benaych-Georges et al. (2011).

We have

{q̂n = m} = {m = min{ j : δ j+1 < dn}}

= {∀ j ∈ {1, . . . ,m}, δ j ≥ dn} ∩ {δm+1 < dn}.

Therefore

P(q̂n = m) = P

 ⋂
1≤ j≤m

{δ j ≥ dn} ∩ {δm+1 < dn}


= 1 − P

 ⋃
1≤ j≤m

{δ j < dn} ∪ {δm+1 ≥ dn}


≥ 1 −

m∑
j=1

P(δ j < dn) − P(δm+1 ≥ dn).
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Case of j = m + 1. In this case, δm+1 = λm+1 − λm+2 (noise eigenvalues). As dn → 0 such
that, n2/3dn → +∞, and by using (6.53),

P(δm+1 ≥ dn)→ 0.

Case of 1 ≤ j ≤ m. These indexes correspond to the spike eigenvalues.

• Let I1 = {1 ≤ l ≤ m|card(Jl) = 1} (simple spike) and I2 = {l − 1|l ∈ I1 and l − 1 > 1}.
For all j ∈ I1 ∪ I2, δ j corresponds to a consecutive difference of λ j issued from two
different spikes, it follows that, again using (6.52), it can be proved that

P(δ j < dn)→ 0, ∀ j ∈ I1.

• Let I3 = {1 ≤ l ≤ m − 1|l < (I1 ∪ I2)}. For all j ∈ I3, it exists k ∈ {1, . . . ,K} such that
j ∈ Jk.

– If j + 1 ∈ Jk then, by (6.52), Xn =
√

nδ j converges weakly to a limit which has a
density function on R+. So by using Lemma 6.18 below and that dn = o(n−1/2), we
have

P
(
δ j < dn

)
= P

(√
nδ j <

√
ndn

)
→ 0;

– Otherwise, j + 1 < Jk, so α j , α j+1. Consequently, as previously, δ j corresponds to
a consecutive difference of λ j issued from two different spikes, and it can be proved
as previously using (6.52), that

P(δ j < dn)→ 0.

• The case of j = m can be treated in a similar way, thus omitted.

In conclusion, P(δm+1 ≥ dn) → 0 and
∑m

j=1 P(δ j < dn) → 0; it then follows that
P(q̂n = m)→ 1. �

Lemma 6.18 Let (Xn)n≥0 be a sequence of positive random variables which weakly
converges to a probability distribution with a continuous cumulative distribution function.
Then for all real sequence (un)n≥0 which converges to 0,

P(Xn ≤ un)→ 0.

Proof As (Xn)n≥0 converges weakly, there exists a function G such that, for all v ≥ 0,
P(Xn ≤ v)→ G(v). Furthermore, as un → 0, there exists N ∈ N such that for all n ≥ N,
un ≤ v. So P(Xn ≤ un) ≤ P(Xn ≤ v), and lim

n→+∞
P(Xn ≤ un) ≤ lim

n→+∞
P(Xn ≤ v) = G(v).

Now we can take v→ 0: as (Xn)n≥0 is positive, G(v)→ 0. Consequently, P(Xn ≤ un)→ 0.
�

There is a variation of the estimator defined as follows. Instead of making a decision
once one difference δk is below the threshold dn, see (6.51), one may decide once two
consecutive differences δk and δk+1 are both below dn, i.e. define the estimator to be

q̂∗n = min{ j ∈ {1, . . . , s} : δ j+1 < dn and δ j+2 < dn}. (6.54)

It can be easily checked that the proof for the consistency of q̂n applies equally to q̂∗n under
the same conditions as in Theorem 6.17. This version of the estimator will be used in all
the simulation experiments below. Intuitively, q̂∗n should be more robust than q̂n. Notice
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that eventually more than two consecutive differences could be used in (6.54). However,
simulation experiments reported below show that using more consecutive differences does
not improve significantly.

6.6.2 Implementation issues and overview of simulation experiments

The practical implementation of the estimator q̂∗n depend on two unknown parameters,
namely the noise variance σ2 and the threshold sequence dn. Simulation experiments use
an improved version of the following maximum likelihood estimator

σ̂2 =
1

p − m

p∑
i=m+1

λi. (6.55)

It remains to choose a threshold sequence dn. The choice here is of the form dn =

Cn−2/3
√

2 log log n, where C is a “tuning” parameter to be adjusted. In the Monte-Carlo
experiments below, two choices of C are considered: the first one is manually tuned and
used to assess some theoretical properties of the estimator q̂∗n; and the second one is a
data-driven and automatically calibrated one which is detailed in §6.6.3.

In the remaining of the section, extensive simulation experiments are conducted to
assess the quality of the estimator q̂∗n including a detailed comparison with a benchmark
detector known as Kritchman and Nadler’s detector (KN).

In all experiments, data are generated with the assigned noise level σ2 = 1 and empir-
ical values are calculated using 500 independent replications. Table 6.1 gives a summary
of the design in the experiments. One should notice that both the given value of σ2 = 1
and the estimated one, as well as the manually tuned and the automatic chosen values of
C are used in different scenarios. There are in total three sets of experiments. The first set
(Figures 6.8 and 6.9 and Models A, B), given in this section, illustrates the convergence of
the estimator q̂∗n. The second set of experiments (Figures 6.10 and 6.11 and Models D-K)
addresses the performance of the automatic tuned C and they are reported in §6.6.3. The
last set of experiments (Figures 6.12, 6.13 and 6.14), reported in §6.6.4, are designed for
a comparison with the benchmark detector KN.

Multiple spikes versus simple spikes
In Figure 6.8, the case of a single spike α is considered and the probability of misesti-
mation analysed as a function of the value of α, for (p, n) = (200, 800), y = 0.25 and
(p, n) = (2000, 500), y = 4. For the first case C = 5.5 and for the second case C = 9
(all manually tuned). The noise level σ2 = 1 is given. The estimator q̂∗n performs well; in
particular, the critical level

√
y from which the behaviour of the spike eigenvalues differs

from the noise ones is recovered (
√

y = 0.5 for the first case, and 2 for the second).
Next, the same parameters are used with addition of some multiple spikes. Figure 6.9

concerns Model A: (α1, α2, α3) = (α, α, 5), 0 ≤ α ≤ 2.5 and Model B: (α1, α2, α3) =

(α, α, 15), 0 ≤ α ≤ 8. The dimensions are (p, n) = (200, 800) and C = 6 for Model A, and
(p, n) = (2000, 500) and C = 9.9 for Model B.

There is no particular difference with the previous situation: when spikes are close or
even equal, or near to the critical value, the estimator remains consistent although the
convergence rate becomes slower. Overall, the estimator q̂∗n is able to find the number of
spikes.
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Table 6.1 Summary of parameters used in the simulation experiments. (L: left, R: right)

Fig. Mod. spike Fixed parameters Var.
No. No. values p, n y σ2 C par.

1 (α) (200, 800) 1/4 Given 5.5
α(2000, 500) 4 9

2 A (α, α, 5) (200, 800) 1/4 Given 6
αB (α, α, 15) (2000, 500) 4 9.9

3L D (6, 5) 10 Given 11 and auto nE (6, 5, 5)

3R F (10, 5) 1 Given 5 and auto nG (10, 5, 5)

4L H (1.5) 1 Given 5 and auto nI (1.5, 1.5)

4R J (2.5, 1.5) 1 Given 5 and auto nK (2.5, 1.5, 1.5)

5L D (6, 5) 10 Estimated Auto n

5R J (2.5, 1.5) 1 Estimated Auto n

6L E (6, 5, 5) 10 Estimated Auto n

6R K (2.5, 1.5, 1.5) 1 Estimated Auto n

7 L No spike 1 Estimated Auto n10
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Figure 6.8 Misestimation rates as a function of spike strength for (p, n) = (200, 800) and (p, n) =

(2000, 500).
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Figure 6.9 Misestimation rates as a function of spike strength for (p, n) = (200, 800), Model A and
(p, n) = (2000, 500), Model B.

6.6.3 An automatic calibration procedure for the tuning parameter C

In the previous experiments, the tuning parameter C are selected manually on a case by
case basis. This is however untenable in a real-life situation and an automatic calibra-
tion of this parameter is preferable. The idea is to use the difference of the two largest
eigenvalues of a Wishart matrix (which correspond to the null case without any spike):
indeed, the estimator q̂∗n is found once two consecutive eigenvalues are below the thresh-
old dn corresponding to a noise eigenvalue. As the distribution of the difference between
eigenvalues of a Wishart matrix is not known explicitly, 500 independent replications are
drawn to evaluate numerically approximate the distribution of the difference between the
two largest eigenvalues λ̃1− λ̃2. The quantile s such that P(λ̃1− λ̃2 ≤ s) = 0.98 is estimated
by the average of the 10th and the 11th largest spacings. Finally, the automatically tuned
value is set to

C̃ = s · n2/3/
√

2 × log log(n) . (6.56)

The values of C̃ are reported in Table 6.2 for various (p, n) with y = 1 or y = 10.

Table 6.2 Approximation of the threshold s such that P(λ̃1 − λ̃2 ≤ s) = 0.98.

(p,n) (200,200)(400,400)(600,600) (2000,200)(4000,400)(7000,700)

Value of s 0.340 0.223 0.170 0.593 0.415 0.306

C̃ 6.367 6.398 6.277 11.106 11.906 12.44

The values of C̃ are quite close to the manually tuned values found previously in similar
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settings (For instance, C = 5 for y = 1 and C = 9.9 or 11 for y = 10), although they
are slightly higher. Therefore, this automatic calibration of C̃ can be used in practice for
arbitrary pairs of (p, n).

To assess the quality of the automatic calibration procedure, some simulation experi-
ments are run using both C̃ and the manually tuned C. The case y = 10 is considered in
Figure 6.10. On the left panel, Model D (α = (6, 5)) and Model E (α = (6, 5, 5)) (upper
curve) are considered, while the right panel reports on Model F (α = (10, 5)) and Model
G (α = (10, 5, 5)) (upper curve). The dotted lines are the results with C manually tuned.
Using the automatic value C̃ causes only a slight deterioration of the estimation perfor-
mance. Notice however a significantly higher error rates in the case of multiple spikes for
moderate sample sizes.

100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Models D and E

n

F
re

qu
en

cy
 o

f m
is

es
tim

at
io

n

D, auto C
D, C chosen
E, auto C
E, C chosen

100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Models F and G

n

F
re

qu
en

cy
 o

f m
is

es
tim

at
io

n
F, auto C
F, C chosen
G, auto C
G, C chosen

Figure 6.10 Misestimation rates as a function of n for Models D, E (left) and Models F, G (right).

The case y = 1 is considered in Figure 6.11 with Models H (α = 1.5) and I (α =

(1.5, 1.5)) (upper curve) on the left and Model J (α = (2.5, 1.5)) and K (α = (2.5, 1.5, 1.5))
(upper curve) on the right.

Compared to the previous situation of y = 10, using the automatic value C̃ affects a
bit more the estimator q̂∗n (up to 20% of degradation). Nevertheless, the estimator remains
consistent.

6.6.4 Method of Kritchman & Nadler and comparison

Detector of Kritchman & Nadler
A benchmark for the number of spikes with high-dimensional data is the Kritchman and
Nadler’s detector (KN). In this section, this detector is compared to q̂∗n (denoted hereafter
as PY) by simulations.

Recall that in the null case (without any spike) and assuming the variables {yi j} are
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Figure 6.11 Misestimation rates as a function of n for Models H, I (left) and Models J, K (right).

Gaussian, the largest sample eigenvalue λ1 obeys Tracy-Widom law (Theorem 6.3)

P

(
λ1

σ2 <
βp

n2/3 s + b
)
→ F1(s), s > 0,

where b = (1 +
√

y)2, βp =

(
1 +

√
p
n

) (
1 +

√
n
p

) 1
3

and F1 is the Tracy-Widom distribution

of order 1. Assume that the variance σ2 is known. To distinguish a spike eigenvalue λ
from a noise one at an asymptotic significance level γ, the idea of the KN detector is to
check whether

λk > σ
2
(
βp−k

n2/3 s(γ) + b
)
, (6.57)

where s(γ) verifies F1(s(γ)) = 1 − γ and can be found by inverting the Tracy-Widom
distribution. The KN detector is based on a sequence of nested hypothesis tests of the
following form: for k = 1, 2, . . . ,min(p, n) − 1,

H
(k)
0 : m ≤ k − 1 vs. H (k)

1 : m ≥ k .

For each value of k, if (6.57) is satisfied, H (k)
0 is rejected and k is increased by one. The

procedure stops once an instance of H (k)
0 is accepted and the number of spikes is then

estimated to be q̃n = k − 1. Formally, their estimator is defined by

q̃n = argmin
k

(
λk < σ̂

2
(
βp−k

n2/3 s(γ) + b
))
− 1.

Here σ̂ is some estimator of the noise level σ2.
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Comparison between the KN and PY estimators
In order to follow a real-life situation, both estimators are run with an estimated noise
variance σ̂2. Furthermore, the automatically calibrated value C̃ is used for the PY esti-
mator. The value of γ = 0.5% is given to the false alarm rate of the estimator KN, as
recommended by its authors.
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Figure 6.12 Misestimation rates as a function of n for Model D (left) and Model J (right).

In Figure 6.12, Model D: (α1, α2) = (6, 5) and and Model J: (α1, α2) = (2.5, 1.5) are
considered. For both models, the performances of the two estimators are close. However
the estimator PY is slightly better for moderate values of n (n ≤ 400) while the estima-
tor KN has a slightly better performance for larger n. The difference between the two
estimators are more important for Model J (up to 5%).

Next in Figure 6.13 Model E: (α1, α2, α2) = (6, 5, 5) and Model K: (α1, α2, α2) =

(2.5, 1.5, 1.5) are examined. These two models are analogous to Model D and J but with
two multiple spikes.

For Model E, the estimator PY shows superior performance for n ≤ 500 (up to 20%
less error): adding a multiple spike affects more the performance of the estimator KN. The
difference between the two algorithms for Model K is bigger than in the previous cases;
the estimator PY performs better in all cases, up to 10%.

In Figure 6.14, the null case without any spike at all (Model L) is considered. The
estimation rates become the so-called false-alarm rate, a concept widely used in signal
processing literature. The cases of y = 1 and y = 10 with σ2 = 1 given are considered. In
both situations, the false-alarm rates of two estimators are quite low (less than 4%), and
the detector KN has a lower false-alarm rate.

In summary, in most of situations reported here, the estimator q̂∗n (PY) compares favourably
to the benchmark KN detector. It is however important to notice a fundamental difference
between these two estimators: the KN estimator is designed to keep the false alarm rate
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Figure 6.13 Misestimation rates as a function of n for Model E (left) and Model K (right).
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Figure 6.14 False-alarm rates as a function of n for y = 1 (left) and y = 10 (right).

at a very low level while the PY estimator attempts to minimise an overall misestimation
rate.
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6.7 Estimation of the noise variance

For Johnstone’s spiked population model given in (6.50), the maximum likelihood esti-
mator of the noise variance is given in (6.55), namely

σ̂2 =
1

p − m

p∑
i=m+1

λi, (6.58)

i.e. the average the p − m sample eigenvalues corresponding to the noise (Anderson and
Rubin, 1956) (notice that this is derived under the Gaussian assumption). In the classical
low-dimensional setting, we let p fixed and n → ∞, asymptotic normality holds with the
standard

√
n-convergence and we have (Anderson and Amemiya, 1988).

√
n(σ̂2 − σ2)

L
−→ N(0, s2), s2 =

2σ4

p − m
. (6.59)

Once again, the situation is radically different when p is large compared to the sample
size n and it has been widely observed in the literature that σ̂2 seriously underestimates
the true noise variance σ2 in such situation. As all meaningful inference procedures in
the model will unavoidably use this variance estimate, such a severe bias is more than
disappointing and needs to be corrected.

Notice that for the spiked population covariance matrix Σ, its spectral distribution is

Hn =
p − m

p
δσ2 +

1
p

K∑
k=1

mkδαi+σ2 , (6.60)

and Hn → δσ2 .

Theorem 6.19 Assume that

(a) Conditions (i)-(vi) on the spiked population model (6.50) as formulated in §6.2 are
satisfied and the variables {yi j} are Gaussian;

(b) All the K spike eigenvalues are fundamental spikes.

Then, we have
(p − m)

σ2
√

2y
(σ̂2 − σ2) + b(σ2)

D
−→ N(0, 1),

where

b(σ2) =

√
y
2

m + σ2
K∑

k=1

mk

αk

 .
Proof By definition,

(p − m)σ̂2 =

p∑
i=1

λi −

m∑
i=1

λi.

By Corollary 6.4,

m∑
i=1

λi
a.s.
−→

K∑
k=1

mk

(
αk +

cσ4

αk

)
+ σ2m(1 + y). (6.61)
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For the first term, we have

p∑
i=1

λi = p
∫

xdFn(x)

= p
∫

x d(Fn − Fyn,Hn )(x) + p
∫

x dFyn,Hn (x)

= Xn( f ) + p
∫

x dFyn,Hn (x),

where Fn is the ESD of the sample covariance matrix Sn and the function f is the identity
function f (x) = x. By Theorem 3.9, the first term is asymptotically normal

Xn( f ) =

p∑
i=1

λi − p
∫

x dFyn,Hn (x)
D
−→ N(m(x), v(x)),

with asymptotic mean

m(x) = 0 , (6.62)

and asymptotic variance

v(x) = 2cσ4 . (6.63)

The derivation of these two formula and the following identity∫
x dFyn,Hn (x) =

∫
t dHn(t) = σ2 +

1
p

K∑
k=1

mkαi.

are standard and left to the reader. So we have

p∑
i=1

λi − pσ2 −

K∑
k=1

mkαk
D
−→ N(0, 2yσ4). (6.64)

By (6.61) and (6.64) and using Slutsky’s lemma, we obtain

(p − m)(σ̂2 − σ2) + yσ2

m + σ2
K∑

k=1

mk

αk

 D
−→ N(0, 2yσ4).

�

Therefore for high-dimensional data, the m.l.e. σ̂2 has an asymptotic bias −b(σ2) (after
normalisation). This bias is a complex function of the noise variance and the m spiked
eigenvalues. It is worth noticing that the above CLT is still valid if ỹn = (p − m)/n is
substituted for y. Now if we let p � n so that ỹn ' 0 and b(σ2) ' 0, and hence

(p − m)

σ2
√

2y
(σ̂2 − σ2) + b(σ2) '

√
p − m

σ2
√

2
(σ̂2 − σ2) .

This is nothing but the CLT (6.59) for σ̂2 known under the classical low-dimensional
scheme. From this point of view, Theorem 6.19 constitutes a natural extension of the
classical CLT to the high-dimensional context.
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6.7.1 Monte-Carlo experiments

In these experiments, i.i.d. Gaussian samples of size n are used in three different settings:

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, y = 1;
• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, y = 0.2;
• Model 3: spec(Σ) = (12, 10, 8, 8, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 3, y = 1.5.

Figure 6.15 presents the histograms from 1000 replications of

(p − m)

σ2
√

2y
(σ̂2 − σ2) + b(σ2)

for the three models above, with different sample size n and p = y × n, compared to the
density of the standard normal distribution. Even for a moderate sample size like n = 100,
the distribution is almost normal.

In Table 6.3, we compare the empirical bias of σ̂2 (i.e. the empirical mean of σ2− σ̂2 =

σ2− 1
p−m

∑p
i=m+1 λi) over 1000 replications with the theoretical one −σ2

√
2yb(σ2)/(p−m)

in different settings. In all the three models, the empirical and theoretical bias are close
each other. As expected, their difference vanishes when p and n increase.

Table 6.3 Comparison between the empirical and the theoretical bias in various
settings.

Settings Empirical bias Theoretical bias |Difference|

Model 1
p = 100 n = 100 -0.1556 -0.1589 0.0023
p = 400 n = 400 -0.0379 -0.0388 0.0009
p = 800 n = 800 -0.0189 -0.0193 0.0004

Model 2
p = 20 n = 100 -0.0654 -0.0704 0.0050
p = 80 n = 400 -0.0150 -0.0162 0.0012
p = 200 n = 1000 -0.0064 -0.0063 0.0001

Model 3
p = 150 n = 100 -0.0801 -0.0795 0.0006
p = 600 n = 400 -0.0400 -0.0397 0.0003
p = 1500 n = 1000 -0.0157 -0.0159 0.0002

6.7.2 A bias-corrected estimator

The previous theory recommends to correct the negative bias of σ̂2. However, the bias
b(σ2) depends on the number m and the values of the spikes αk. These parameters could
not be known in real-life applications and they need to be first estimated. Firstly, we can
use the consistent estimators introduced in §6.6 for the unknown number m of spikes.
Next, estimators presented in §6.5 will give consistent estimates of the values of the
spikes.

As the bias depends also on σ2 which we want to estimate, a natural correction is to
use the plug-in estimator

σ̂2
∗ = σ̂2 +

b(σ̂2)
p − m

σ̂2
√

2y.

Notice that in this formula, the number of factors m can be replaces by any consistent
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Figure 6.15 Histogram of (p−m)
σ2
√

2y
(σ̂2−σ2)+b(σ2) compared with the density of a standard Gaussian

law.

estimate as discussed above without affecting its limiting distribution. Using Theorem
6.19 and the delta-method, we obtain the following CLT

Theorem 6.20 We assume the same conditions as in Theorem 6.19. Then, we have

ṽ(y)−
1
2

{
σ̂2
∗ − σ

2 + b̃(σ2)
} D
−→ N(0, 1),
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where

b̃(σ2) =
y
√

2cσ2

(p − m)2

mb(σ2) + 2σ2b(σ2)
K∑

k=1

mkα
−1
k

−2c2σ4b(σ2)2 ∑K
k=1 mkα

−1
k

(p − m)3 = Op

(
1
p2

)
,

and

ṽ(c) =
2yσ4

(p − m)2

1 +
ym

p − m
+

4c2σ4

(pm)3

K∑
k=1

mkα
−1
i

2

=
2yσ4

(p − m)2

(
1 + Op

(
1
p

))
.

Basically, this theorem states that

p − m

σ2
√

2y

(
σ̂2
∗ − σ

2
) D
−→ N(0, 1).

Compared to the m.l.e. σ̂2 in Theorem 6.19, the new estimator has no longer a bias after
normalisation by p−m

σ2
√

2y
. The terms b̃(σ2) and ṽ(c) in the theorem give more details for

the centring parameter and the normalisation rate.
To assess the quality of this bias-corrected estimator σ̂2

∗, we conduct some simulation
experiments using the previous settings: Tables 6.4 and 6.5 give the empirical mean of
σ̂2
∗ over 1000 replications compared with the empirical mean of σ̂2, as well as the mean

squared errors and mean absolute deviations. For comparison, the same statistics are also
given for two alternative estimators σ̂2

KN and σ̂2
US defined as follow:

• σ̂2
KN is the solution of the following non-linear system of m + 1 equations involving

the m + 1 unknowns ρ̂1, . . . , ρ̂m and σ̂2
KN

σ̂2
KN −

1
p − m

 p∑
j=m+1

λn, j +

m∑
j=1

(λn, j − ρ̂ j)

 = 0,

ρ̂2
j − ρ̂ j

(
λn, j + σ̂2

KN − σ̂
2
KN

p − m
n

)
+ λn, jσ̂

2
KN = 0.

• σ̂2
US is defined as

σ̂2
US =

median(λn,m+1, . . . , λn,p)
p−1

y (0.5)
,

where p−1
y is quantile function of the Marčenko-Pastur distribution Fy.

In all three models considered, the bias-corrected estimator σ̂2
∗ is far much better than

the original m.l.e. σ̂2: here mean absolute deviations are reduced by 95% at least. The
performances of σ̂2

∗ and σ̂2
KN are similar. The estimator σ̂2

US shows slightly better perfor-
mance than the m.l.e. σ̂2, but performs poorly compared to σ̂2

∗ and σ̂2
KN. Notice however

the theoretic properties of σ̂2
KN and σ̂2

US are unknown and so far there have been checked
via simulations only.

Notes

The phoneme example discussed in §6.1 appeared in Johnstone (2001) and originated
from Buja et al. (1995). The data set can be downloaded from
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Table 6.4 Empirical mean, MSE (between brackets) and mean absolute deviation of σ̂2

and σ̂2
∗ in various settings.

Settings
σ̂2 |σ2 − σ̂2| σ̂2

∗ |σ2 − σ̂2
∗ |Mod. p n σ2

1
100 100

4
3.8464 (0.0032) 0.1536 3.9979 (0.0035) 0.0021

400 400 3.9616 (0.0002) 0.0384 4.0000 (0.0002) < 10−5

800 800 3.9809 (0.0001) 0.0191 4.0002 (0.0001) 0.0002

2
20 100

2
1.9340 (0.0043) 0.0660 2.0012 (0.0047) 0.0012

80 400 1.9841 (0.0003) 0.0159 2.0001 (0.0003) 0.0001
200 1000 1.9939 (< 10−5) 0.0061 2.0002 (< 10−5) 0.0002

3
150 100

3
2.8400 (0.0011) 0.1600 2.9926 (0.0013) 0.0074

600 400 2.9605 (0.0001) 0.0395 2.9999 (0.0001) 0.0001
1500 1000 2.9839 (< 10−5) 0.0161 2.9998 (< 10−5) 0.0002

Table 6.5 Empirical mean, MSE (between brackets) and mean absolute deviation of σ̂2
KN

and σ̂2
US in various settings.

Settings
σ̂2

KN |σ2 − σ̂2
KN| σ̂2

US |σ2 − σ̂2
US|Mod. p n σ2

1
100 100

4
4.0030 (0.0036) 0.0030 3.8384 (0.0154) 0.1616

400 400 4.0003 (0.0002) 0.0003 3.9585 (0.0013) 0.0415
800 800 4.0002 (0.0001) 0.0002 3.9794 (0.0004) 0.0206

2
20 100

2
1.9997 (0.0048) 0.0003 1.9400 (0.0087) 0.0600

80 400 2.0001 (0.0003) 0.0001 1.9851 (0.0008) 0.0149
200 1000 2.0002 (< 10−5) 0.0002 1.9942 (0.0001) 0.0058

3
150 100

3
2.9935 (0.0016) 0.0065 2.7750 (0.0092) 0.2250

600 400 3.0006 (0.0001) 0.0006 2.9450 (0.0007) 0.0550
1500 1000 2.9999 (< 10−5) 0.0001 2.9773 (0.0001) 0.0227

http://statweb.stanford.edu/%7Etibs/ElemStatLearn/

the website of Hastie et al. (2009) (Data tab, then Phoneme entry). Figure 6.1 is produced
using the first 162 observations in the section “dcl” of the data set.

The name of spiked population model is coined in Johnstone (2001) whilst the main
purpose of the paper is the establishment of the Trace-Widom law (6.3) in the null case.

For Johnstone’s spiked population model, the fluctuation of largest sample eigenvalues
λ j from a complex Gaussian population with a spiked covariance matrix is studied in Baik
et al. (2005). These authors prove a transition phenomenon: the weak limit and the scaling
of λ j are different according to the location of underlying population spike eigenvalues
with respect to the critical value 1 +

√
y. In Baik and Silverstein (2006), the authors con-

sider the spiked population model with general random variables: complex or real and not
necessarily Gaussian. For the almost sure limits of the extreme sample eigenvalues, they
also find that these limits depend on the critical values 1 +

√
y for largest sample eigen-

values, and on 1 −
√

y for smallest ones. In Paul (2007), a CLT is established for spiked
sample eigenvalues under the Gaussian assumption and assuming that spikes are simple
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(multiplicity 1). The CLT for spiked sample eigenvalues in general case with general en-
tries and arbitrary multiplicity numbers of the spikes is given in Bai and Yao (2008) (with
limits located outside the Marčenko-Pastur bulk spectrum interval [(1−

√
y)2, (1 +

√
y)2].

The generalised spiked population model in §6.2 is due to Bai and Yao (2012) as well
as most of the results of the section. The central limit theory in §6.4 follows Bai and Yao
(2008).

For inference on a spiked population model, results in §6.5.2 are due to Bai and Ding
(2012). This reference contains also a CLT for the estimator of spike eigenvalues. As
for estimation of the number of spikes, the benchmark Kritchman and Nadler detector is
introduced in Kritchman (2008) and Kritchman and Nadler (2009). In these papers, this
detector is compared with other existing estimators in the signal processing literature,
based on the minimum description length (MDL), Bayesian information criterion (BIC)
and Akaike information criterion (AIC) (Wax and Kailath, 1985). In most of the studied
cases, the Kritchman and Nadler estimator performs better in case of high-dimensional
data. Furthermore in Nadler (2010), this estimator is also compared with an improved AIC
estimator and it still has a better performance. Therefore, in this chapter comparison for
the PY estimator q̂∗n is only made with the above benchmark detector. The presentation of
§6.6 follows Passemier and Yao (2014) which generalises a previous work Passemier and
Yao (2012) by the same authors. Finally, the material in §6.7 is borrowed from Passemier
et al. (2017). Notice that the two alternative estimators given there are due to Kritchman
(2008) and Ulfarsson and Solo (2008), respectively.

The spiked population model is closely connected to other random matrices ensembles
through the general concept of small-rank perturbations. The goal is again to examine the
effect caused on the sample extreme eigenvalues by such perturbations. Theories on per-
turbed Wigner matrices can be found in Péché (2006), Féral and Péché (2007), Capitaine
et al. (2009), Pizzo et al. (2013) and Renfrew and Soshnikov (2013). In a more general
setting of finite-rank perturbation including both the additive and the multiplicative one,
point-wisely convergence of extreme eigenvalues is established in Benaych-Georges and
Nadakuditi (2011) while their fluctuations are studied in Benaych-Georges et al. (2011).
In addition, Benaych-Georges and Nadakuditi (2011) contain also results on spiked eigen-
vectors that are similar to those presented in §6.3.



Appendix A

Curvilinear integrals

This appendix gives a short introduction to the theory of curvilinear and contour integrals
in the complex plane. As in the CLT’s developed in Chapter 3 for linear spectral statistics
of sample covariance matrices and of random Fisher matrices, the mean and covariance
functions of the limiting Gaussian distributions are expressed in terms of contour inte-
grals, explicit calculations of such contour integrals frequently appear in various chapters
of this book. This appendix will thus provide useful and self-contained references for
those calculations.

The presentation here follows the lectures notes in complex analysis given by André
Giroux at Université de Montréal (Giroux, 2013). In particular, interested reader is rec-
ommended to consult this reference for detailed proofs of the results introduced in this
chapter.

§1 Let f be a complex-valued function defined on an open subset D ⊆ C of the complex
plane and z0 ∈ D. The function f is differentiable at z0 if

lim
z→z0

f (z) − f (z0)
z − z0

exists. In this is the case, the limit is simply denoted by f ′(z0).
The function f is holomorphic in D if it is differentiable everywhere in D. A function

is said holomorphic at a point if it is holomorphic in an open disk centred at this point.

The term analytic function is often used interchangeably with holomorphic function,
although the word analytic is also used in a broader sense to describe any function
(real, complex, or of more general type) that can be written as a convergent power
series in a neighborhood of each point in its domain. The fact that the class of complex
analytic functions coincides with the class of holomorphic functions is a major theorem
in complex analysis.

§2 Theorem A.1 (Cauchy-Riemann) Let D ⊆ C and f : D → C be a holomorphic
function. Then the partial derivatives of the real and imaginary parts u and v of f exist
everywhere in D and they satisfy the Cauchy-Riemann equations

∂u
∂x

=
∂v
∂y
,

∂u
∂y

= −
∂v
∂x
.
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§3 A differentiable curve C is defined by a function t 7→ z(t) from [a, b] ⊆ R to C which
is differentiable with a continuous and non-null derivative z′(t) = x′(t) + iy′(t):

C = {z | z = z(t), a ≤ t ≤ b} .

The function z is called a parametrisation of the curve. A piece-wisely differentiable
curve, or a path, is obtained by joining a finite number of differentiable curves.

Let C be a path. It will always be assumed that z(t1) , z(t2) for a < t1 < t2 < b,
and when z(a) = z(b), the path is said closed. A closed path partition the plane in two
disjoint domains: one is bounded and called the interior of C, the other is unbounded
and called the exterior of C (Jordan theorem).

A closed path is also called a contour.

Example A.2 The unit circle is a contour and can be parametrised by z(t) = eit,
0 ≤ t ≤ 2π. Its interior is the (open) unit disk D(0, 1).

A parametrisation of a closed curve implies a running direction of the curve. A
closed curve is anticlockwise run if the vector iz′(t) points in the direction of its inte-
rior; otherwise it is clockwise run.

iz’
 t

z
t

z’
t

Figure A.1 An anticlockwise-run closed curve.

§4 A subset D ⊆ C which is open and connected is called a domain. Let D ⊆ C be a
domain, f : D→ C a continuous function and C a differentiable curve with parametri-
sation z = z(t), a ≤ t ≤ b. The formula∫

C

f (z)dz =

∫ b

a
f (z(t))z′(t)dt ,

defines the curvilinear integral of f along the curve C. When C is a contour, the curvi-
linear integral becomes a contour integral, and we use a special notation

∮
C

f (z)dz for
such integral.

It is easily checked that the value of a curvilinear integral is independent of the
choice of parametrisation. The curvilinear integral along a path C1 + C2 is defined by∫

C1+C2

f (z)dz =

∫
C1

f (z)dz +

∫
C2

f (z)dz.
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If f = F′ has a primitive function F which is holomorphic on D, then∫
C

f (z)dz =

∫ b

a
f (z(t))z′(t)dt

=

∫ b

a
F′(z(t))z′(t)dt = F(z(t))|ba = F(z2) − F(z1).

It is thus reasonable to write ∫ z2

z1

f (z)dz = F(z2) − F(z1).

In particular for a contour C, ∮
C

f (z)dz = 0 .

Example A.3 Let

C1 =
{
z | eit, 0 ≤ t ≤ π

}
,

and

C2 =
{
z | e−it, 0 ≤ t ≤ π

}
.

Then ∫
C1

dz
z

=

∫ π

0
idt = iπ,

and ∫
C2

dz
z

=

∫ π

0
−idt = −iπ.

The curve C1 − C2, i.e. C1 + (−C2), is the unit circle run anticlockwise, and we have∫
C1−C2

dz
z

= 2iπ.

The holomorphic function 1/z thus has no holomorphic primitive function in the origin-
emptied complex plan.

§5 Theorem A.4 (Cauchy) Let D ⊆ C be a domain, f : D → C a holomorphic
function, and C a contour included in D together with its interior. Then∮

C

f (z)dz = 0.

Theorem A.5 (Cauchy) Let D ⊆ C be a domain, f : D → C a holomorphic
function, and C a contour included in D together with its interior. Then for any z in the
interior of C,

f (z) =
1

2πi

∮
C

f (ζ)
ζ − z

dζ,

where the contour C is run anticlockwise.
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Theorem A.6 (Cauchy) Let D ⊆ C be a domain, f : D → C a holomorphic
function. Then, its derivative f ′ : D → C is holomorphic. Moreover, on any contour
C included in D together with its interior,

f ′(z) =
1

2πi

∮
C

f (ζ)
(ζ − z)2 dζ,

where the contour C is run anticlockwise.

By iterating the differentiation, we see that under the same conditions as in the last
theorem, all the derivatives of f are holomorphic and they satisfy the identity

f (n)(z) =
n!
2πi

∮
C

f (ζ)
(ζ − z)n+1 dζ,

for any integer n ≥ 1. In other words, we can differentiate under the integral as often
as we desire.

§6 A domain D ⊆ C is simply connected if each closed curve in D has its interior also
included in D. For example, convex sets are simply connected, but annuli are not.

Theorem A.7 A holomorphic function f on a simply connected domain has a holo-
morphic primitive function F on this domain:

F(z) = F(z0) +

∫ z

z0

f (z)dz,

where z0 ∈ D and F(z0) are arbitrary.

Example A.8 The arctan function has a holomorphic extension on C \ {(−i∞,−i] ∪
[i,+i∞)} defined by

arctan z =

∫ z

0

dζ
1 + ζ2 .

Therefore,

arctan(1 + i) =

∫ 1

0

1 + i
1 + (1 + i)2t2 dt

=

∫ 1

0

1 + 2t2

1 + 4t4 dt + i
∫ 1

0

1 − 2t2

1 + 4t4 dt = 1.017 + i0.402 .

§7 Theorem A.9 (Laurent) Let D ⊆ C be a domain including the annulus {z | r ≤
|z − z0| ≤ R} and f : D→ C a holomorphic function in D. Then

f (z) =

∞∑
k=−∞

ak(z − z0)k, r < |z − z0| < R ,

where

ak =
1

2πi

∮
Cρ

f (ζ)
(ζ − z0)k+1 dζ,

and Cρ is the circle centred at z0 with radius ρ (r < ρ < R) and anticlockwise run.

The series in the theorem is called Laurent series of f at z0. A plot of annulus where
this expansion takes place is given on Figure A.2.
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R

r

z

z

0

Figure A.2 Laurent Theorem.

§8 A point z0 is an isolated singularity of a function f if the function is holomorphic in
a punctured disk {z | 0 < |z − z0| ≤ R} centred at z0. According to the nature of the
Laurent series of f , three types of singularity points exist.

• A removable singularity point when the Laurent series at the point has no terms with
negative power k < 0;

• A pole of order m is an isolated singularity point such that

f (z) =

+∞∑
k=−m

ak(z − z0)k, a−m , 0 ;

• An essential singularity point is an isolated singularity point where the Laurent
series has infinitely many terms with negative power k < 0.

In the neighbourhood of a pole z0, a holomorphic function f (z) tends to infinity
when z→ z0. The behaviour near an essential singularity is much more complex.

Example A.10 The function e1/z has an essential singularity at the origin. We have

lim
x→0+

e1/x = +∞ ,

lim
x→0−

e1/x = 0 ,

lim
y→0

e1/(iy) does not exist.

§9 A meromorphic function on a domain D is a function f : D→ Cwhich is holomorphic
on D except at isolated singularity points which are all poles. By letting the value of the
function be ∞ at these poles, the function can be considered as a continuous function
from D to C = C ∪ {∞}.

Example A.11 A rational function as well the following functions are meromorphic
on the whole complex plan:

sin z
z3 ,

cos z
z3 − 1

, and tan z =
sin z
cos z

.
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§10 Consider a function f holomorphic on the punctured disk 0 < |z − z0| < r and let

f (z) =

+∞∑
k=−∞

ak(z − z0)k, 0 < |z − z0| < r,

be its Laurent series at z0. The residue of f at z0 is

Res( f , z0) = a−1 =
1

2πi

∮
Cρ

f (ζ)
ζ − z0

dζ, (A.1)

where Cρ is the circle centred at z0 with radius 0 < ρ < r and run anticlockwise.
When z0 is a pole of order m, the residue is also given by the formula

Res( f , z0) = lim
z→z0

1
(m − 1)!

dm−1

dzm−1 [(z − z0)m f (z)]. (A.2)

Example A.12 (a). Res
(

sin z
z3 , 0

)
= 0. Indeed, sin z is holomorphic in C so that

z is a pole of order 3 of the function sin z/z3. By (A.2),

Res
(

sin z
z3 , 0

)
= lim

z→0

1
2!

d2

dz2 [sin(z)] = 0.

(b). Res
( cos z
zn − 1

, ωk
n

)
=

1
n
ωk

n cosωk
n, ωn = ei2π/n, 0 ≤ k ≤ n − 1. By definition,

zn − 1 =

n−1∏
`=0

(z − ω`n).

As cos z is holomorphic, ωk
n is a simple pole of cos z/(zn − 1). By (A.2),

Res
( cos z
zn − 1

, ωk
n

)
=

cosωk
n∏

j,k(ωk
n − ω

j
n)
.

On the other hand, by differentiation of zn − 1, we have

nzn−1 =

n−1∑
`=0

∏
j,`

(z − ω j
n).

In particular, for z = ωk
n,

n(ωk
n)n−1 =

n−1∑
`=0

∏
j,`

(ωk
n − ω

j
n) =

∏
j,k

(ωk
n − ω

j
n).

Therefore, since (ωk
n)n = 1, we have

Res
( cos z
zn − 1

, ωk
n

)
=

cosωk
n

nω−k
n

=
1
n
ωk

ncosωk
n.

(c). Res
(
e1/z, 0

)
= 1. As noticed previously, 0 is not a pole but an essential singu-

larity of e1/z. By (A.1),

Res
(
e1/z, 0

)
=

1
2πi

∮
Cρ

e1/z

z
dz.
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Using the parametrisation z = ρeiθ (0 ≤ θ ≤ 2π) of Cρ, we have

Res
(
e1/z, 0

)
=

1
2π

∫ 2π

0
exp{ρ−1e−iθ}dθ

=

∞∑
k=0

1
2π

∫ 2π

0

1
k!
ρ−ke−ikθdθ

=
1

2π

∫ 2π

0
dθ = 1.

§11 Theorem A.13 Let D ⊆ C be a domain and f : D → C a holomorphic function
in D except at isolated singularity points. Let C be a contour which is included in D
together with its interior, does not pass by any of these singularity points and contain
a finite number of them, say z1, . . . , zm, in its interior. Then,∮

C

f (z)dz = 2πi
n∑

k=1

Res( f , zk), (A.3)

where the contour C is run anticlockwise.

This theorem provides the fundamental tool used throughout the book for the calcu-
lation of useful contour integrals by the so-called method of residue.

Notice that the Cauchy formula

f (n)(z0) =
n!
2πi

∮
C

f (z)
(z − z0)n+1 dz,

corresponds to the case of a pole of order n + 1 at z0.

Example A.14 We have∮
C

sin z
z3 = 0 ;∮

C

cos z
zn − 1

dz =
2πi
n

∑
k

ωk
n cosωk

n, where the sum runs over the ωk
n’s in the

interior of C;∮
C

e1/zdz =

1, if 0 is interior to C,

0, otherwise.



Appendix B

Eigenvalue inequalities

In this appendix, we list a series of inequalities on eigenvalues or singular values of
complex-valued matrices that are used at several places of the book.

If A is a p×n matrix of complex entries, then its singular values s1(A) ≥ ... ≥ sq(A) ≥ 0,
q = min(p, n), are defined as the square roots of the q largest eigenvalues of the nonnega-
tive definite Hermitian matrix AA∗ where ∗ denotes transpose and conjugate. If A (n × n)
is Hermitian, then let λ1(A) ≥ λ2(A) ≥ ... ≥ λn(A) denote its eigenvalues.

Theorem B.1 (singular value and spectral decomposition) Let A be a p×n matrix. Then
there exist q orthonormal vectors u1, ...,uq of Cp and q orthonormal vectors v1, ..., vq of
Cn such that

A =

q∑
j=1

s ju jv∗j (B.1)

From this expression, we immediately get the well-known Courant-Fischer fromula

sk = min
w1,...,wk−1

max
‖v‖2=1

v⊥w1,...,wk−1

‖Av‖2 . (B.2)

If A is an n × n Hermitian matrix,then there exist an orthonormal basis {u1, ...,un} of Cn

such that

A =

n∑
j=1

λ ju ju∗j (B.3)

Similarly, we have the formula

λk = min
w1,...,wk−1

max
‖v‖2=1

v⊥w1,...,wk−1

v∗Av. (B.4)

Theorem B.2 (Cauchy interlacing law) For any n× n Hermitian matrix An with top left
(n − 1) × (n − 1) minor An−1, then

λi+1(An) ≤ λi(An−1) ≤ λi(An), (B.5)

for all 1 ≤ i < n.

Notice that if one takes successive minors An−1, An−2, . . . , A1 of an n×n Hermitian ma-
trix An, and computes their spectra, then (B.5) shows that this triangular array of numbers
forms a pattern known as a Gelfand-Tsetlin pattern.
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Theorem B.3 (Weyl inequalities) For n × n Hermitian matrices A and B,

λi+ j−1(A + B) ≤ λi(A) + λ j(B), (B.6)

valid whenever i, j ≥ 1 and i + j − 1 ≤ n.

Theorem B.4 (Ky Fan inequalities) For n × n Hermitian matrices A and B,

λ1(A + B) + · · · + λk(A + B) ≤

λ1(A) + · · · + λk(A) + λ1(B) + · · · + λk(B). (B.7)

The following Theorems B.5-B.10 are from Bai and Silverstein (2010).

Theorem B.5 Let A and C be two p × n complex matrices. Then, for any nonnegative
integers i and j, we have

si+ j+1(A + C) ≤ si+1(A) + s j+1(C) (B.8)

Theorem B.6 Let A and C be complex matrices of order p × n and n × m. We have

s1(AC) ≤ s1(A)s1(C). (B.9)

Theorem B.7 Let A and C be complex matrices of order p × n and n × m. For any
i, j ≥ 0, we have

si+ j+1(AC) ≤ si+1(A)s j+1(C), (B.10)

where when i>rank(A), define si(A) = 0.

Theorem B.8 Let A = (ai j) be a complex matrix of order n and f be an increasing
convex function. Then we have

n∑
j=1

f (
∣∣∣a j j

∣∣∣) ≤ n∑
j=1

f (s j(A)). (B.11)

Note that when A is Hermitian, s j(A) can be replaced by eigenvalues and f need not be
increasing.

Theorem B.9 Let A and C be complex matrices of order p × n and n × m. We have

k∑
j=1

s j(AC) ≤
k∑

j=1

s j(A)s j(C). (B.12)
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Theorem B.10 Let A be a p× n complex matrix and U be an n×m complex matrix with
U∗U = Im. Then, for any k ≤ p,

k∑
j=1

s j(AU) ≤
k∑

j=1

s j(A). (B.13)
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of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the
fluctuations. Ann. Probab., 37(1), 1–47.

Chen, Song Xi, Zhang, Li-Xin, and Zhong, Ping-Shou. 2010. Tests for high-dimensional covariance
matrices. Journal of the American Statistical Association, 105, 810–819.

Dempster, A. P. 1958. A high dimensional two sample significance test. Annals of Mathematical
Statististics, 29, 995–1010.
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