检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox

统计与大数据研究院在顶级期刊发表多篇高水平论文

2023-12-16

研究院2020年以来在统计学领域四大顶级期刊发文情况

01  Tingyou Zhou, Liping Zhu, Chen Xu, and Runze Li (2020). Model free forward regression via cumulative divergence. Journal of the American Statistical Association. 115:531, 1393-1405

02  Wei Ma, Yichen Qin, Yang Li, and Feifang Hu (2020). Statistical inference for covariate-adaptive randomization procedures. Journal of the American Statistical Association. 115:531, 1488-1497

03  Cheng Meng, Xinlian Zhang, Jingyi Zhang, Wenxuan Zhong, and Ping Ma (2020). More efficient approximation of smoothing splines via space-filling basis selection. Biometrika. 107:3, 723-735

04  Yuqian Zhang, and Jelena Bradic (2022). High-dimensional semi-supervised learning: in search of optimal inference of the mean. Biometrika. 109:2, 387-403

05  Le Bao, Changcheng Li, Runze Li, and Songshan Yang (2022). Causal structural learning on MPHIA individual dataset. Journal of the American Statistical Association. 117:540, 1642-1655

06  Hanzhong Liu, Fuyi Tu, and Wei Ma (2023). Lasso-adjusted treatment effect estimation under covariate-adaptive randomization. Biometrika. 110:2, 431-447

07  Sai Li, Tony T. Cai, and Hongzhe Li (2023). Transfer learning in large-scale graphical models with false discovery rate control. Journal of the American Statistical Association. 118:543,2171-2183

08  Runze Li, Kai Xu, Yeqing Zhou, and Liping Zhu (2023). Testing the effects of high-dimensional covariates via aggregating cumulative covariances. Journal of the American Statistical Association. 118:543,2184-2194

09  Huang W, and Zhang Z (2023). Nonparametric estimation of continuous treatment effect with measurement error. Journal of the Royal Statistical Society: Series B. 85:2, 474–496

10  Rui Tuo, Shiyuan He, Arash Pourhabib, Yu Ding and Jianhua Z. Huang(2023). A reproducing kernel Hilbert space approach to functional calibration of computer models. Journal of the American Statistical Association. 118:542,883-897

11  Wei Ma, Ping Li, Li-xin Zhang, and Feifang Hu (2022). A new and unified family of covariate adaptive randomization procedures and their properties. Journal of the American Statistical Association, Accepted

12  Wei Zhong, Chen Qian, Wanjun Liu, Liping Zhu and Runze Li (2023). Feature screening for interval-valued response with application to study association between posted salary and required skill. Journal of the American Statistical Association, Accepted

13  Sai Li, Linjun Zhang, T. Tony Cai, and Hongzhe Li (2023) Estimation and inference for high-dimensional generalized linear models with knowledge transfer. Journal of the American Statistical Association, Accepted

14  Liu Y, and Hu F (2023). The impact of unobserved covariates on covariate adaptive randomized experiment. Annals of Statistics, Accepted

15  Yaowu Zhang, and Liping Zhu (2023).  Projective independence tests in high dimensions: the curses and the cures. Biometrika, Accepted

16  Fang Q, Guo S. and Qiao X (2023). Adaptive thresholding of high dimensional covariance function. Journal of the American Statistical Association, Accepted

17  Yeqing Zhou, Kai Xu, Liping Zhu and Runze Li (2023). Rank-based indices for testing independence between two high-dimensional vectors. Annals of Statistics, Accepted


研究院2020年以来在运筹学和人工智能领域顶级期刊发文情况

01  Kun Zhang, Guangwu Liu, and Shiyu Wang (2022). Bootstrap-based budget allocation for nested simulation. Operations Research. 70:2, 1128-1142

02  Xing Yan, Yonghua Su, and Wenxuan Ma (2023). Adaptively flexible predictive distribution for uncertainty quantification. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Accepted

03  Qiong Zhang, Archer Gong Zhang, and Jiahua Chen (2023). Gaussian mixture reduction with composite transportation divergence. IEEE Transactions on Information Theory, Accepted

04  Wenxuan Ma, Xing Yan, Kun Zhang (2023). Improving uncertainty quantication of variance networks by tree-structured learning. IEEE Transactions on Neural Networks and Learning Systems, Accepted