检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。
职称:教授、博士生导师(统计与大数据研究院)
研究方向:复杂高维数据分析、复杂数据关联分析和因果分析
联系方式:lastnamedotfirstname@ruc.edu.cn
2001年获得华东师范大学学士学位,2006年获得华东师范大学博士学位。中国人民大学“杰出学者”特聘教授、博士生导师,统计与大数据研究院院长,国家重大人才工程入选者。中国现场统计学会高维数据分会和生存分析分会副理事长。先后担任《The Annals of Statistics》、《Statistica Sinica》和《Journal of Multivariate Analysis》等统计学领域国际重要学术期刊Associate Editor,以及《系统科学与数学》和《应用概率统计》等国内重要学术期刊编委。
朱利平教授长期从事复杂数据分析方法和理论研究工作。在复杂高维数据分析领域,提出半参数充分降维方法和非参数变量筛选方法;在复杂数据关联分析和因果分析领域,提出了投影相关系数和累积散度等非线性度量工具与检验方法。多篇论文入选ESI高被引论文。
部分论文:
19、Tingyou Zhou, Liping Zhu, Runze Li and Chen Xu (2019): Model-free forward regression via cumulative divergence. Journal of the American Statistical Association. To appear
18、Shujie MA, Liping ZHU, Zhiwei ZHANG, Chih-Ling TSAI and Raymond CARROLL (2019): A robust and efficient approach to causal inference based on sparse sufficient dimension reduction, The Annals of Statistics, To appear.
17、Jian HUANG, Yuling JIAO, Xiliang LU and Liping ZHU (2018): Robust decoding from 1-bit compressive sampling with ordinary and regularized least squares. SIAM Journal of Scientific Computing, 40(4), 2062-2086
16、 Liping ZHU,Yaowu ZHANG and Kai XU(2018):Measuring and testing for interval quantile dependence. The Annals of Statistics 46(6A): 2683-2710
15、Liping ZHU, Kai XU, Runze LI and Wei ZHONG (2017): Projection correlation between two random vectors. Biometrika. 104(4): 829-843
14、 Xingdong FENG and Li-Ping ZHU(2016):Estimation and testing of varying coefficients in quantile regression. Journal of the American Statistical Association. 111(513):266-274
13、 Kelin XU, Wenshen GUO, Momiao XIONG, Li-Ping ZHU and Li JIN(2016):An estimating equation approach to dimension reduction in longitudinal data. Biometrika. 103 (1):189-203
12、 Yanyuan MA and Li-Ping ZHU (2014). On estimation efficiency of the central mean subspace.Journal of the Royal Statistical Society, Series B. 76(5) 885-901
11、 Yanyuan MA and Li-Ping ZHU (2013). Efficient estimation in sufficient dimension reduction. The Annals of Statistics. 41(1) 250-268
10、 Yanyuan MA and Li-Ping ZHU (2013). Efficiency loss and the linearity condition in dimension reduction.Biometrika. 100(2) 371-383
09、 Zhou YU, Li-Ping ZHU, Heng PENG and Li-Xing ZHU(2013):Dimension reduction and predictor selection in semiparametric models. Biometrika. 100(3):641-654
08、 Yanyuan MA and Li-Ping ZHU (2013). Doubly robust and efficient estimators for heteroscedastic partially linear single-index model allowing high-dimensional covariates.Journal of the Royal Statistical Society Series B. 75(2) 305-322.
07、 Runze LI, Wei ZHONG and Li-Ping ZHU (2012). Feature screening via distance correlation learning.Journal of the American Statistical Association. 107(499), 1129-1139.
06、 Yanyuan MA and Li-Ping ZHU (2012). A Semiparametric Approach to Dimension Reduction.Journal of the American Statistical Association, 107(497), 168-179.
05、 Li-Ping ZHU, Lexin LI, Runze LI and Lixing ZHU (2011). Model-free feature screening for ultrahigh dimensional data.Journal of the American Statistical Association. 106(496). 1464-1475.
04、 Le-Xin LI, Li-Ping ZHU and Lixing ZHU (2011). Inference on primary parameter of interest with aid of dimension reduction estimation.Journal of the Royal Statistical Society, Series B, 73(1) 59-80.
03、 Li-Ping ZHU, Tao WANG, Lixing ZHU and Louis FERRE (2010). Sufficient dimension reduction through discretization-expectation estimation. Biometrika, 97(2), 295-304.
02、 Li-Ping ZHU, Lixing ZHU and Zhenghui FENG (2010). Dimension reduction in regressions through cumulative slicing estimation.Journal of the American Statistical Association, 105(492) 1455-1466.
01、 Li-Ping ZHU and Lixing ZHU (2009). On distribution-weighted partial least squares with diverging number of highly correlated predictors.Journal of the Royal Statistical Society, Series B. 71(2), 525-548.