检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。
职称:准聘副教授、博士生导师(统计与大数据研究院)
研究方向:高维统计模型,机器学习,因果推断。
联系方式:saili@ruc.edu.cn
个人简介
2013年本科毕业于中国人民大学统计学院统计学专业,2018年博士毕业于美国罗格斯大学统计系,2018年至2021年在美国宾夕法尼亚大学医学院生物统计系和沃顿商学院做博士后研究,2021年9月加入中国人民大学统计与大数据研究院担任助理教授 ,2022年8月晋升为准聘副教授。研究方向包括高维复杂数据的统计推断问题,机器学习和遗传学驱动的统计方法和理论,基于工具变量的因果推断等。
详见个人主页:https://saili0103.github.io
Publications:
Sai Li and Ting Ye. A Focusing Framework for Testing Bi-Directional Causal Effects with GWAS Summary Data. Journal of the Royal Statistical Society: Series B. 87(2), 529-548. 2025.
Jianqiao Wang, Sai Li, and Hongzhe Li. A unified approach to robust inference for genetic covariance. Journal of the American Statistical Association. 119(548): 2585-2597, 2024.
Sai Li, Yisha Yao, and Cun-Hui Zhang. Comment: A Scale-Free Approach for False Discovery Rate Control in Generalized Linear Models. Journal of the American Statistical Association. 118(543), 1586–1589, 2023.
Sai Li, Linjun Zhang, T. Tony Cai, and Hongzhe Li. Estimation and inference in high-dimensional GLMs with transfer learning. Journal of the American Statistical Association. 119(546), 1274–1285, 2023.
Sai Li, Tianxi Cai, and Rui Duan. Targeting Underrepresented Populations in Precision Medicine: A Federated Transfer Learning Approach. Annals of Applied Statistics. 17(4): 2970-2992, 2023.
Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improving out-of-distribution robustness via selective augmentation. International Conference of Machine Learning. PMLR 162:25407-25437, 2022.
Sai Li, T. Tony Cai, and Hongzhe Li. Transfer learning in large-scale graphical models with false discovery rate control. Journal of the American Statistical Association. 118(543), 2171–2183, 2022.
Sai Li, T. Tony Cai, and Hongzhe Li. Transfer learning for high-dimensional linear regression: Prediction, estimation, and minimax optimality. Journal of the Royal Statistical Society: Series B.84: 149–173, 2022.
Sai Li, T. Tony Cai, and Hongzhe Li. Inference for high-dimensional linear mixed-effects models: A quasi-likelihood approach. Journal of the American Statistical Association. 117(540): 1835-1846, 2022.
Sai Li. Debiasing the debiased Lasso with bootstrap. Electronic Journal of Statistics, 14(1): 2298-2337, 2020.
Sai Li, Ritwik Mitra, and Cun-Hui Zhang. Comment: An adaptive resampling test for detecting the presence of significant predictors. Journal of the American Statistical Association. 110(512): 1455-1456, 2016.